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Introduction

Starting with the end of the seventeenth century, one of the most interesting
directions in mathematics (attracting the attention as J. Bernoulli, Euler,
Jacobi, Legendre, Abel, among others) has been the study of integrals of the
form

T dz
A'w(T) = ;»

To
where w is an algebraic function of 2. Such integrals are now called abelian.

Let us examine the simplest instance of an abelian integral, one where w

is defined by the polynomial equation

w? = 2% + pz +4¢, (1)
where the polynomial on the right hand side has no multiple roots. In this case
the function A,, is called an elliptic integral. The value of A, is determined
up to mvy + nve, where v; and v, are complex numbers, and m and n are
integers. The set of linear combinations mv, + ny, forms a lattice H C C, and
so to each elliptic integral A,, we can associate the torus C/H.

On the other hand, equation (1) defines a curve in the affine plane C? =
{(z,w)}. Let us complete C* to the projective plane P> = P?(C) by the
addition of the “line at infinity”, and let us also complete the curve defined
by equation (1). The result will be a nonsingular closed curve E C P? (which
can also be viewed as a Riemann surface). Such a curve is called an elliptic
curve.

It is a remarkable fact that the curve E and the torus C/H are isomorphic
Riemann surfaces. The isomorphism can be given explicitly as follows.

Let p(z) be the Weierstrass function associated to the lattice H C C.

1 1 1
p=at Z [ —ony2 2|
2 o (z —2h) (2h)
It is known that p(z) is a doubly periodic meromorphic function with the
period lattice H. Further, the function p(z) and its derivative p'(2) are related
as follows:

(¢')* = 4p° — g2 — 93, (2)
for certain constants g and gz which depend on the lattice H. Therefore,
the mapping z — (p(z), p'(z)) is a meromorphic function of C/H onto the
compactification E’ C P? of the curve defined by equation (2) in the affine
plane. It turns out that this mapping is an isomorphism, and furthermore, the
projective curves E and E’ are isomorphic!

Let us explain this phenomenon in a more invariant fashion. The projection
(2,w) = z of the affine curve defined by the equation (1) gives a double
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covering 7 : E — P!, branched over the three roots 21, 22, z3 of the polynomial
2% + pz + q and the point oo.

The differential w = dz /2w, restricted to £ is a holomorphic 1-form (and
there is only one such form on an elliptic curve, up to multiplication by con-
stants). Viewed as a C'* manifold, the elliptic curve E is homeomorphic to the
product of two circles S* x S?, and hence the first homology group H,(FE,Z)
is isomorphic to Z @ Z. Let the generators of Hi(F,Z) be v; and ;. The

lattice H is the same as the lattice {m f_h w+n f_u w} . Indeed, the elliptic
. . . 1 .
integral A,, is determined up to numbers of the form f, B/ ool where [ is
a closed path in C\{z1, 22, 23}. On the other hand

=
—_—ee. — w’
/l 2B +pz+gq 5

where 7y is the closed path in E covering ! twice.

The integrals [ w are called periods of the curve E. The lattice H is called
the period lattice. 7i‘he discussion above indicates that the curve E is uniquely
determined by its period lattice.

This theory can be extended from elliptic curves (curves of genus 1) to
curves of higher genus, and even to higher dimensional varieties.

Let X be a compact Riemann surface of genus g (which is the same as a
nonsingular complex projective curve of genus g). It is well known that all
Riemann surfaces of genus g are topologically the same, being homeomorphic
to the sphere with g handles. They may differ, however, when viewed as
complex analytic manifolds. In his treatise on abelian functions (see de Rham
[1955]), Riemann constructed surfaces (complex curves) of genus g by cutting
and pasting in the complex plane. When doing this he was concerned about
the periods of abelian integrals over various closed paths. Riemann called those
periods (there are 3g — 3) moduli. These are continuous complex parameters
which determine the complex structure on a curve of genus g.

One of the main goals of the present survey is to introduce the reader to
the ideas involved in obtaining these kinds of parametrizations for algebraic
varieties. Let us explain this in greater detail.

On a Riemann surface X of genus g there are exactly ¢ holomorphic 1-
forms linearly independent over C. Denote the space of holomorphic 1-forms
on X by H'0, and choose a basis w = (wy,...,w,) for H*. Also choose a
basis v = (71,-..,724) for the first homology group H;(X,Z) ~ Z?9. Then

the numbers
.Qij =/ Wy
v;

are called the periods of X. They form the period matriz 2 = (£2;;). This
matrix obviously depends on the choice of bases for H? and H,(X,Z). It
turns out (see Chapter 3, Section 1), that the periods uniquely determine the
curve X. More precisely, let X and X' be two curves of genus g. Suppose
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w and w' are bases for the spaces of holomorphic differentials on X and X',
respectively, and v and 7' be are bases for H;(X,Z) and H,(X',Z) such that
there are equalities
(i) x = (i) x

between the intersection numbers of v and «'. Then, if the period matrices
of X and X’ with respect to the chosen bases are the same, then the curves
themselves are isomorphic. This is the classical theorem of Torelli.

Now, let X be a non-singular complex manifold of dimension d > 1. The
complex structure on X allows us to decompose any complex-valued C*®
differential n-form w into a sum

w= E: whe

ptg=n

of components of type (p,q). A form of type (p,q) can be written as

WP = > hrgdzi, A...Adzi, AdZj, A ... \d3,.
(11'])=(ily-~~)1:ptjl'---)jq)

If X is a projective variety (and hence a Kahler manifold; see Chapter 1,
Section 7) , then this decomposition transfers to cohomology:

H"(X,C) = @ HPY  HPI = foP, (3)
ptg=n

This is the famous Hodge decomposition (Hodge structure of weight n on
H™(X), see Chapter 2, Section 1). It allows us to define the periods of a
variety X analogously to those for a curve. Namely, let Xy be some fixed
non-singular projective variety, and H = H™(Xp,Z). Let X be some other
projective variety, diffeomorphic to Xy, and having the same Hodge numbers
h?? = dim H?9(X,). Fix a Z-module isomorphism

¢: H"(X,Z)~ H.

This isomorphism transfers the Hodge structure (3) from H™(X, C) onto H¢ =
H ®z C. We obtain the Hodge filtration

{0} =F""' CF*C...C F° = H¢
of the space H¢, where
F?P = Hn’o@...@Hp'n—p,F’H-l = {0}

This filtration is determined by the variety X up to a GL(H, Z) action, due
to the freedom in the choice of the map ¢. The set of filtrations of a linear
space Hc¢ by subspaces FP of a fixed dimension f? is classified by the points
of the complex projective variety (the flag manifold) F = F(f™,..., f!; He).
The simplest flag manifold is the Grassmanian G(k,n) of k-dimensional linear
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subspaces in C*. The conditions which must be satisfied by the subspaces
HP1 forming a Hodge structure (see Chapter 2, Section 1) define a complex
submanifold D of F, which is known as the classifying space or the space of
period matrices.

This terminology is easily explained. Let hP? = dim HP9. Further, let the
basis of HP'? be {w??}, for j = 1,...,hP9, and let the basis modulo torsion
of H,(X,Z) be 11,...,7. Consider the matrix whose rows are

If"’:(/ w;”q,...,/ wjp,q).
m T

This is the period matrix of X. There is some freedom in the choice of the basis
elements w!*?, but, in any event, the Hodge structure is determined uniquely
if the basis of H is fixed, and in general the Hodge structure is determined up
to the action of the group I" of automorphisms of the Z-module H. Thus, if
{X:}, i € A is a family of complex manifolds diffeomorphic to X, and whose
Hodge numbers are the same, we can define the period mapping

$:A—->TI\D.

We see that we can associate to each manifold X a point of the classifying
space D, defined up to the action of a certain discrete group. One of the
fundamental issues considered in the present survey is the inverse problem —
to what extent can we reconstruct a complex manifold X from the point in
classifying space. This issue is addressed by a number of theorems of Torelli
type (see Chapter 2, Section 5 for further details).

A positive result of Torelli type allows us, generally speaking, to construct
a complete set of continuous invariants, uniquely specifying a manifold with
the given set of discrete invariants. Let us look at the simplest example - that
of an elliptic curve E. The two-dimensional vector space Hc = H(E,C) is
equipped with the non-degenerate pairing

(1,m) =/Eu/\n-

Restricting this pairing to H = H!(E, Z) gives a bilinear form
Qu:HxH->Z,

dual to the intersection form of 1-cycles on E. We can, furthermore, pick a
basis in H, so that
0 -1
e = (3 7).
Hg¢ is also equipped with the Hodge decomposition

He = Cw + Cw,

where w is a non-zero holomorphic differential on E. It is easy to see that
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vV=1(w,) >0,

and so in the chosen basis w = (a, 3), where
v—=1(8a - aB) > 0. (4)

The form w is determined up to constant multiple. If we pick w = (), 1), then
condition (4) means that Im A > 0, and so the space of period matrices D is
simply the complex upper half-plane:

D={zeC|Imz>0}.
Now let us consider the family of elliptic curves
E,=C/{Z)x+Z}, XeD.

This family contains all the isomorphism classes of elliptic curves, and two
curves E) and E) are isomorphic if and only if

N = ad+b
cA+d’
where (“ b) € SLy(Z).
c d
Thus, the set of isomorphism classes of elliptic curves is in one-to-one cor-
respondence with the points of the the set A = I'\D. The period mapping

$:A->T\D

is then the identity mapping. Indeed, the differential dz defines a holomorphic
1-form in each E,.

If v1, 2 is the basis of H,(E\,Z) generated by the elements ), 1 generating
the lattice {ZA + Z} then the periods are simply

(L[ )=

The existence of Hodge structures on the cohomology of non-singular pro-
Jjective varieties gives a lot of topological information (see Chapter 1, Section
7). However, it is often necessary to study singular and non-compact vari-
eties, which lack a classical Hodge structure. Nonetheless, Hodge structures
can be generalized to those situations also. These are the so-called mized
Hodge structures, invented by Deligne in 1971. We will define mixed Hodge
structures precisely in Chapter 4, Section 1, but now we shall give the simplest
example leading to the concept of a mixed Hodge structure.

Let X be a complete algebraic curve with singularities. Let S be the set
of singularities on X and for simplicity let us assume that all points of S
are simple singularities, with distinct tangents. The singularities of X can be
resolved by a normalization m : X — X. Then, for each point s € S the
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pre-image m—!(s) consists of two points z; and z2, and outside the singular
set the morphism

m: X\nr7}(S) > X \S

is an isomorphism.

X2

Fig. 1

For a locally constant sheaf Cx on X we have the exact sequence
02Cx »7mCg—Cs—0,

which induces a cohomology exact sequence

0 - H°X,Cs) — HY(X,Cx) — HYX,mCg) — 0

I I
H°(S,Cs) H'(X,Cx)

This sequence makes it clear that H!(X,Cx) is equipped with the filtration
0 C H°(S,Cs) = Wy C HY(X,Cx) = W,;. The factors of this filtration
are equipped with Hodge structures in a canonical way — Wy with a Hodge
structure of weight 0, and W, /W, with a Hodge structure of weight 1, induced
by the inclusion of W; /W, into H(X,Cx).

Even though mixed Hodge structures have been introduced quite recently,
they helped solve a number of difficult problems in algebraic geometry — the
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problem of invariant cycles (see Chapter 4, Section 3) and the description
of degenerate fibers of families of of algebraic varieties being but two of the
examples. More beautiful and interesting results will surely come.

Here is a brief summary of the rest of this survey.

In the first Chapter we attempt to give a brief survey of classical results
and ideas of algebraic geometry and the theory of complex manifolds, neces-
sary for the understanding of the main body of the survey. In particular, the
first three sections give the definitions of classical algebraic and complex ana-
lytic geometry and give the results GAGA (Géometrie algébrique et géométrie
analytique) on the comparison of algebraic and complex analytic manifolds.

In Sections 4, 5, and 6 we recall some complex analytic analogues of some
standard differential-geometric constructions (bundles, metrics, connections).

Section 7 is devoted to classical Hodge theory.

Sections 8, 9, and 10 contain further standard material of classical algebraic
geometry (divisors and line bundles, characteristic classes, extension formu-
las, Kodaira’s vanishing theorem, Lefschetz’ theorem on hyperplane section,
monodromy, Lefschetz families).

Chapter 2 covers fundamental concepts and basic facts to do with the
period mapping, to wit:

Section 1 introduces the classifying space D of polarized Hodge structures
and explains the correspondence between this classifying space and a polar-
ized algebraic variety. We study in some depth examples of classifying spaces
associated to algebraic curves, abelian varieties and Kahler surfaces. We also
define certain naturally arising sheaves on D.

In Section 2 we introduce the complex tori of Griffiths and Weil associated
to a polarized Hodge structure. We also define the Abel-Jacobi mapping, and
study in detail the special case of the Albanese mapping.

In Section 3 we define the period mapping for projective families of complex
manifolds. We show that this mapping is holomorphic and horizontal.

In Section 4 we introduce the concept of variation of Hodge structure, which
is a generalization of the period mapping.

In Section 5 we study four kinds of Torelli problems for algebraic vari-
eties. We study the infinitesimal Torelli problem in detail, and give Griffiths’
criterion for its solvability.

In Section 6 we study infinitesimal variation of Hodge structure and explain
its connection with the global Torelli problem.

In Chapter 3 we study some especially interesting concrete results having
to do with the period mapping and Torelli-type results.

In Section 1 we construct the classifying space of Hodge structures for
smooth projective curves. We prove the infinitesimal Torelli theorem for non-
hyperelliptic curves and we sketch the proof of the global Torelli theorem for
curves.

In Section 2 we sketch the proof of the global Torelli theorem for a cubic
threefold.
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In Section 3 we study the period mapping for K3 surfaces. We prove the
infinitesimal Torelli theorem. We construct the modular space of marked K3
surfaces. We also sketch the proof of the global Torelli theorem for K3 surfaces.
We study elliptic pencil, and we sketch the proof of the global Torelli theorem
for them.

In Section 4 we study hypersurfaces in P™. We prove the local Torelli the-
orem, and sketch the proof of the global Torelli theorem for a large class of
hypersurfaces.

Chapter 4 is devoted to mixed Hodge structures and their applications.

Section 1 gives the basic definitions and survey the fundamental properties
of mixed Hodge structures.

Sections 2 and 3 are devoted to the proof of Deligne’s theorem on the exis-
tence of mixed Hodge structures on the cohomology of an arbitrary complex
algebraic variety in the two special cases: for varieties with normal crossings
and for non-singular incomplete varieties.

Section 4 gives a sketch of the proof of the invariant cycle theorem.

Section 5 computes Hodge structure on the cohomology of smooth hyper-
surfaces in P".

Finally, in Section 5 we give a quick survey of some further developments of
the theory of mixed Hodge structures, to wit, the period mapping for mixed
Hodge structures, and mixed Hodge structures on the homotopy groups of
algebraic varieties.

In Chapter 5 we study the theory of degenerations of families of algebraic
varieties.

Section 1 contains the basic concepts of the theory of degenerations.

Section 2 gives the definition of the limiting mixed Hodge structure on the
cohomology of the degenerate fiber (introduced by Schmid).

In Section 3 we construct the exact sequence of Clemens-Schmid, relating
the cohomology of degenerate and non-degenerate fibers of a one-parameter
family of Kdhler manifolds.

Sections 4 and 5 are devoted to the applications of the Clemens-Schmid
exact sequence to the degenerations of curves and surfaces.

In Section 6 we study the degeneration of K3 surfaces. We conclude that
the period mapping is an epimorphism for K3 surfaces.

In conclusion, a few words about the prerequisites necessary to understand
this survey. Aside from the standard university courses in algebra and differen-
tial geometry it helps to be familiar with the basic concepts of algebraic topol-
ogy (Poincaré duality, intersection theory), homological algebra, sheaf theory
(sheaf cohomology and hypercohomology, spectral sequences — see references

Cartan-FEilenberg [1956], Godement [1958], Grothendieck [1957], Griffiths-
Harris [1978]), theory of Lie groups and Lie algebras (see Serre [1965]), and
Riemannian geometry (Postnikov [1971]).

We have tried to either define or give a reference for all the terms and results

used in this survey, in an attempt to keep it as self-contained as possible.
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Chapter 1
Classical Hodge Theory

§1. Algebraic Varieties

Let us recall some definitions of algebraic geometry.

1.1. Let C* = {z = (21,...,2,)|2; € C} be the n-dimensional affine space
over the complex numbers. An algebraic setin C" is a set of the form

V(fi,--s fm) = {z € C"[fi(2) = ... = fm(2) = 0}.

where f;(2) lie in the ring C[z] = C[2,...,z,] of polynomials in n variables
over C. An algebraic set of the form V(f,) is a hypersurface in C*, assuming
that fi(z) is not a constant.

It is clear that if f(2) lies in the ideal I = (fi,..., fm) of C[z] generated
by fi(2),..., fm(%) then f(a) = 0 for all @ € V(f1,..., fm). Thus, to each
algebraicset V = V(fi,..., fm) we can associate an ideal I(V') C C[z], defined
by

I(V)={f eCz]|f(a) =0,a€ V}.

The ideal I(V) is a finitely generated ideal, and so by Hilbert’s Nullstel-
lensatz (Van der Waerden [1971)) I(V) = /(f1,-- -, fm), Where V.J = {f €
Clz]|f* € J for some k € N} is the radical of J.

The ring C[V] = C[z]/I(V) is the ring of regular functions over the alge-
braic set V. This ring coincides with the ring of functions on V which are
restrictions of polynomials over C™.

1.2. It is easy to see that the union of any finite number of algebraic sets
and the intersection of any number of algebraic sets is again an algebraic
set, and so the collection of algebraic sets in C* satisfies the axioms of the
collection of closed sets of some topology. This is the so-called Zariski topology.
The Zariski topology in C* induces a topology on algebraic sets V C C*, and
this is also called the Zariski topology. The neighborhood basis of the Zariski
topology on V is the set of open sets of the form Uy, .. s, = {a € V|fi(a) #
0,..., fe(@) #0, f1,..., fr € CV]}.

Let V3 C C* and V, C C™ be two algebraic sets. A map f : V; = 1}
is called a regular mapping or a morphism if there exists a set of m regular
functions fi,..., fm € C[V1] such that f(a) = (fi(a),..., fm(a)) for all a €
V1. Obviously a regular mapping is continuous with respect to the Zariski
topology. 1t is also easy to check that defining a regular mapping f: V}; —» V;
is equivalent to defining a homomorphism of rings f* : C[V1] = C[V;], which
transforms the coordinate functions z; € C[V;] into f; € C[V4].

Two algebraic sets V7 and V;, are called isomorphic if there exists a regular
mapping f : Vi — V2 which possesses a regular inverse f~! : V, = ;.



