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PREFACE

Quantum Mechanics was discovered in 1920’ to explain ‘the stability
of atom. It is undoubtedly one of the greatest achievements in theoretical
physica in the century. It is the basic theory for atomic and subatomic
phenomena. Q

The concepts of quantum theory are radically different from the classical
theory, which describes the everyday phenomena successfully. The quantum

mechanical concepts are described in mathematical language. This is the -

approach we have followed in this book. We, however, do not assume any
advanced knowledge of mathematics. The knowledge of differential and
integral calculus and familiarity with matrices are sufficient to understand
this book. The mathematics needed beyond this is developed int the text.

We have tried to keep the presentation well motivated and to provide
sufficient details in order to facilitate the undetstanding of the subject.
Our emphasis is on the basic theory rather than on specific applications in
stomic, molecular, solid state and nuclear physics.

The book could be divided into 3 semester courses. Chapters 1~7, Chap-
ter 8 [Secs. 1-7) and Chapter 12 (Secs. 1-2) could form one semester under-
graduate course. Chapter 8 (Secs. 8-13), Chapter 9, Chapter 10 (Secs. 1-3),
Chapter 11 (Secs. i-5), Chapter 12 (Sec. 4), Chapters 13 and 14 should

~
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vili Preface

be suitable for the second semester undergradunate course. The rest of the
sections and chapters could form one semester graduate course.

This book is based on course of lectures' which we have given at the
Punjab University, Lahore, The Quaid-I-Asam University, Islamabad, The
King Fahd University of Petroleum and Minerals, Dhahran(R), The King
Saud University, Riyadh(F) and the Ummal-Qura University, Makkah Al-
Mukarramah(F) at various times. In fact we have been encouraged by our
students to write these lectures in a book form. We would like to express
our thanks to them and acknowledge the respective universities for their
support. :

In particular we are grateful to our former students Dr. M. M. Ilyas
and especially Dr. Sajjad Mahmood for help in preparing this book for
publication. We are grateful to our colleagues Dr. Fahim Hussain and
Dr. Pervais Hoodbhouy for reading the first draft of the manuscript and
for some useful suggestions.

We also wish to express our thanks to Mr. Shbahat Ullah Khan for
typing the first draft of the manuscript.

We were first introduced to this subject by Prof. Abdus Salam. We
vould like to take this opportunity to express our deep sense of gratitude
io him for the encouragement throughout our careers.

/ Fayyasuddin
- » Riasuddin -
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Chapter 1
BREAKDOWN OF C“SSICAL CONCEPTb

1.1 Introduction

Quantum mechanics is the theory which describes phenomena on the
atomic and molecular scale. An event in this domain is not visible to the
human eye. The concepts of classical physics which have been developed
to describe phenomena on the macroscopic scale may not be applicable
for processes on the microscopic scale of dimensions 10~® to 10~!* cm.
There are, however, some macroscopic quantum systems, e.g. superfluids,
superconductors, transistors and main sequence stars.

We first outline the concepts of classical theory and then describe hdlv,
for the microphysical world, the necessity for départure from classical
physics is clearly shown by experimental results.

In classical physics, matter is treated in terms of particles of definif y
mass, and radiation is described as wave motion. The two great disciplines
of classical physics are Newtonian Mechanics and Maxwell's theory. The
former describes the motion of material particles according to Newtonis
Laws. Classical mechanics successfully describes the electrically neutral
macroscopic systems. Energy E and momentum p of a particle are two
important dynamical variables.

v 1



2 Quantum Mechanics R t

The electric and magnetic phenomena are described in terms of electric
and magnetic fields E and B which satisfy Maxwell’s equations

divE = 4xp (1.1a)
1B
curlE = -;-Et- (l.lb)
4r 13E
curlB = 'c—j + PrTY (1.1¢)
divB =0.

Here p is the charge density and j is the electric current and they satisfy
the continuity equation

% +divj=0. (1.2)
In free space, E and B satisfy the wave equation
132 2
(ZW"V JE.B=0. (1.3)

A solution of this equation shows that E and B propagate through space
as waves with speed ¢. For appropriate frequencies, these waves should
be identified with visible light. The whole spectrum of radiation from ex-
tremely long wave length region of radio waves, through visible range, to
extremely small wave length region of X-rays and 7-rays is described in -
terms of electromagnetic waves as given by Maxwell’s theory.

1.2 Wave Packet
As we have seen, electromagnetic radiation is regarded as consisting of

waves which propagate through space with velocity ¢. A typical wave in
z-direction is expressed as: '
¥(z,t) = Aci(’{s-zmn)
A : wave length i
r = 1/v : periodic time (v frequency) . (1.4)
k=-2-'\£:wsvenu,mber o
w=2xv: angular frequency .

k can be regarded as vector. A wave in 3 dimensions can be written as

v(r,t) = Aekr=ot) (1.5)



Breakdown of Classical Concepts 3

We define a phase § = k - r — wt. A surface of constant phase is called a
wave front. The velocity with which this surface moves is called the phase
velocity. To calculate the phase velocity we note that 8 is constant on this

surface:

dé
‘—1-‘-—0

or

dr
k--‘-‘-t-—w-—o.

This gives the phase velocity [k = |k |n]

w

k|

‘ n-u= =vA. (1.6)

We cannot send a signal in the form of a monochromatic wave. However,
what we do, in practise, is to send a signal in the form of a wave packet or
group of waves. The only velocity which can be experimentally measured is
the group velocity which we define below. The wave packet can be generated
by superpoeition of a number of simple harmonic waves with wave numbers
centered round the mean wave number. Consider first the superposition of
two waves

V1 = Aei(ks-ut)
Y = Aei[(k+Ak)=—(u+Aw)¢]
Y=9¢1+¥s

= Aexp [‘.(zlc-;Akz 2w -; Aw)t]

X exp [i(-;—Akz - %Awt)] + exp [- i(%Akz - %Awt)]

X 1 1
= A lkz—wt) = - =
A 2cos(2(Ak)z z(Aw)t)‘ )

carrierwave ~—
modulation

(1.7)
where we have put

2k + Ak s 2k
2w+ Aw & 2w .
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4 Quantum Mechanics
The phase velocity ss before is given by -
u= ‘-E =pl.

On the other hand, the maximum of the amplitude moves wiih velocity

Aw Av

Al v A—(W . (1.8)
This is the group velocit}.
The wave length of modulation is given by
2x 4
. Am = m = KE (1.9)

The plot of Eq. (1.7) is shown in Fig. 1.1.
w .

Fig. 1.1. The superposition of two simple harmonic waves of slightly different frequencies
and wave numbers. ) ’

The width of the wave packet is evidently given by (hm the wave length
of the modulation) ’ o

1 2x
Az=32m = 2%
or » :
AkAz = 2x !
or

AkAz>1. | (1.10)



Breakdown of Classical Concepts 5.

In general, we can represent a wave packet (which is a superpoaition of
monochromatic waves with wave numbers centered around the mean value

kﬁ)v as: wy

$lrt) = [ é.A(kjef(kz—w(iiiidl;. ' (1.11a)
¢(z,0).=’ '/;w A(k)e 4 dk (1.11b)
A(k) = 51; /-oo V(z)e **dz: . {1.11¢)

The wave packet is localised within a distance Az and has a spread Ak
in wave number as shown in Fig. 1.2. It can be shown by Fourier analysis
that Az and Ak are such that
AzAk > 1.
vix.0)

'V UV U7
Fig. 1.3a. A wave packet pictured at t = 0.
Alk)

ko

Fig. 1.3b. Picture of A(K). .



6 Quantum Mechanics
Since w is a function of k, i.e.
w=uwlk), (1.12)

in general there will be dispersion in the wave, the wave packet spreading

out as it moves along. The range over which A(k) is appreciably different

from sero is "
ko-%Akskshﬁ-;Ak. (1.13)

To reduce the dispersion, we take
Ak < ko,
and expand Eq. (1.12) around kq:
w(k) = w(ko) + (-5;)“(&-@)%.. : (1.14)

Now let us rewrite Eq. (1.11b) in the following way

W(a0) = [ Ak rith-roingy

= ¢hos / ” A(k)ef(h=No)= ) (1.15)
or
¥(z) = e*o*X(z) , (1.16)
where o
X(z) = / A(k)ei(k—ko)2 g (1.17)

is appreciably different from sero only in the range Az. Now using

Eq. (1.14) in Eq. (1.11a)
¢(z,t)~/°° A(k)etkon+ilh=Ro)z =i(wot +ug (k-ko)t) g
-o0
= ¢ilkoz—wot) / ® A(k)eF(h=Ro)(z-vet) i
= tho-ws) X (7 uyt) . (1.18)

The wave packet is composed of two factors: the first factor represents a
wave of frequency wo/2x and wave length 2x/ko; the last factor describes



