'COMPUTING CONCEPTS

- C++

BESSENTIALS

Computing Concepts
with

++

Essentials

Cay S. Horstmann

San Jose State University

John Wiley & Sons. Inc.

New York & Chichester ¢ Brisbane ¢ Toronto ¢ Singapore; ¢ Weinheim

ACQUISITIONS EDITOR Regina Brooks

MARKETING MANAGER Jay Kirsch
SENIOR PRODUCTION EDITOR Tony VenGCraitis
DESIGN DIRECTOR Madelyn Lesure
MANUFACTURING MANAGER Mark Cirillo
PHOTO EDITOR Lisa Passmare
ILLUSTRATION COORDINATOR Sandra Rigby

This book was set in Stempel Schneidler by Publication Services, Inc., and printed and bound by R. R.
Donnelley/Crawfordsville. The cover was printed by Phoenix Color.

Recognizing the importance of preserving what has been written, it is a
policy of John Wiley & Sons, Inc. to have books of enduring value published
in the United States printed on acid-free paper, and we exert our best
efforts to that end.

The paper in this book was manufactured by a mill whose forest managements programs include
sustained yield harvesting of its timberlands. Sustained yield harvesting principles ensure that the
number of trees cut each year does not exceed the amount of new growth.

Copyright © 1997, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright

owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department John Wiley & Sons Inc

Library of Congress Cataloging in Publication Data
Horstmann, Cay S 1959

Computing ccheepts with C++ essentials Cay S Horstmann.

P un

Includes bibliographical references

ISBN 0 471 13770 7 (alk paper)

1 C++ (Computer program language) 2 Computers 1 Title.
QA76 73 L153H669 1996 96 39307
008 13"3-dc21 CIp

Printed in the United States of America

09876543

Preface

This book gives a traditional introduction to computer science using modern tools.
As computer scientists, we have the good fortune of being able to introduce stu-
dents to an activity that is accessible, satisfying, and deep rather than broad: namely,
the activity of programming. Like the majority of computer scientists, I believe that
programming is the central theme of computer science. Thus, this course teaches
students how to program.

While this book remains traditional in outlook, it uses modern techniques in three
ways.

First, the programming language is a subset of C++. Although C++ is far from
a perfect educational language, it makes pragmatic sense to use it. C++ is required
for advanced computer science courses. Convenient and inexpensive programming
environments are available on all major platforms. C++ is sufficiently expressive to
teach programming concepts. This book avoids pointers through the use of modern
features of the ANSI C++ standard—in particular, reference parameters, the stream
library, the string class, and the vector<T> template. Pointers are used only for
linked lists and polymorphism.

The second modern aspect is the early use of objects. Objects are introduced in
two stages. From Chapter 2 on, students learn to use objects—in particular strings,
streams, and graphical shapes. Students become comfortable with the concepts of
creating objects and calling member functions. Then the book follows a traditional
path, discussing branching and loops, functions, and procedures. Chapter 8 teaches
how to implement classes and member functions.

The third modem aspect is the use of graphics. Students enjoy programming
graphics. There are many programming examples in which the numbers and the
visual information reinforce each other. This book uses a very simple graphics li-
brary that is available on a number of popular platforms. Unlike traditional graphics
libraries, this library uses objects in a very straightforward and effective
way.

The choice of programming language has a very visible impact on any book on
programming. However, the purpose of the book is to teach computing concepts,
not C++, which is just a tool toward that end. In 1997 there will be a Java version
of this book that teaches the same concepts, in the same order, using Java instead of
C++.

vi Preface

Sample Curricula

This book contains more material than could be covered in one semester, so you
will need to make a choice of chapters to cover. The core material of the book is:

Chapter 2. Fundamental Data Types
. Objects

Decisions

SR SN]

Chapter

Chapter

o

Chapter 5. Iteration
Chapter 6 Functions

Sections 9.1-9.4 Arrays

The following chapters are optional:

Chapter 1. Introduction

Chapter 7. Testing and Debugging
Chapter 8. Classes

Chapter 10). Files

Chapter 11. Modules

Chapter 12, Algorithms

Chapter 13. Data Structures
Chapter 14. Inheritance

The following graph shows the dependencies between the chapters.

Dependencies
Between Sections

The material in Chapters 12 though 14 is meant as an introduction to these topics,
not a definitive treatment.

A good choice for a semester-long course is to teach Chapters 2 though 11. This
will comfortably lead students into a second-semester course on data structures. If
you are not concerned about separate compilation, you can omit Chapter 11 and
cover Chapter 12 instead.

If the second semester uses C instead of C++, you may want to omit Chapter 11
and instead cover Appendix 3 to get students up to speed in C. I

Preface

vii

[f the second semester covers object-oriented design in detail, you can omit Chap-
ter 8, Sections 9.5 though 9.7, and Chapters 13 and 14. Your students will then be
using classes, but they will not implement them.

If you choose to cover inheritance but skip Chapter 13, you will need to cover
Section 13.2 on pointers. That section is independent of the remainder of Chapter 13.

The book covers the following knowledge units from the ACM curriculum guide-
lines.

AL1L: Basic Data Structures (6 of 13 hours)

AL2: Abstract Data Types (2 of 2 hours)

AL3: Recursion (2 of 3 hours)

AL6: Sorting and Searching (2 of 6 hours)

PL3: Representation of Data Types (2 of 2 hours)

PL4: Sequence Control (2 of 4 hours)

PLS5: Data Control, Sharing and Type Checking (2 of 4 hours)
PL6: Run-Time Storage Management (2 of 4 hours)

PR: Introduction to a Programming Language (12 of 12 hours)
SE1: Fundamental Problem-Solving Concepts (16 of 16 hours)
SP1: Historical and Social Context of Computing (3 of 3 hours)

The Use of C-:

[t is impossible to teach all of C++ to beginning programmers in one semester. This
book purposefully omits a number of useful but technically complex C++ topics,
such as copy construction and destruction, run-time type identification, function
pointers, parameterized types, exception handling, name spaces, and operator over-
loading.

This book does not teach programming “close to the metal”. For example, strings
are treated as fundamental types. Characters are simply strings of length 1. This ap-
proach may offend those who feel that students should understand the C implemen-
tation of strings, but it has been a great hit with students, who no longer have to deal
with character array overruns and dangling character pointers. There is exactly one
place in the book where I missed the char type. (Challenge: Find it.)

Since the focus of the book is on computing concepts, I try not to dwell on syntac-
tical wrinkles of C++. Consider the #include directive. In my opinion, the distinc-
tion between <...> and "..." delimiters is just the kind of clutter that serves no
useful purpose in an introductory course. The directive #include "iostream.h"
will find the system header just fine (provided there is no file named iostream.h in
the current directory). If you think it is not a great burden to learn about the distinc-
tion between system headers and private headers, there is an Advanced Topic note
in the book to back you up.

viii

Preface

C++ has two styles of comments: the C-style /**/ and the C++-style //. The
// style is great if you want to dash off a one-line comment, but it is a true pain for
comments extending over multiple lines. I don’t want to use two comment styles in
the book. Furthermore, I would like to encourage students to write comments as long
as they need 1o be rather than cramming them into the remainer of the current line.
Therefore, 1 chose to use the /* */ comments. Naturally, everyone has a strong
personal preference in this regard. It is an exceedingly minor matter, and if your
preference doesn’t match mine, please feel free to use whatever style you like best.

Occasionally, a choice of programming style was prompted by anticipating
widespread use of the ANSI standard C++ libraries. For example, iterators are
pointerlike objects that describe locations in containers. For technical reasons, iter-
ators do not support the -> operator. Therefore, I chose to use the more mundane
(*p) .m for pointers as well. Again, if you don't agree, feel free to use the other
syntax.

About the Code Library

To use this book, you need a copy of the code library. You can obtain the library
via the World Wide Web (http://www.horstmann.com/ccc). Simply uncompress the
library and place all files into your working directory. Then include the header file
ccc.h (which stands for Computing Concepts with C++) in your programs. There is
no need to build a project or to link in a separate library.

This book uses the ANSI C++ Boolean type, string class, and vector template
throughout. Since not all compilers currently support these features, the code library
that accompanies this book contains an implementation that has been tested on most
major C++ compilers. The header file ccc.h includes the compiler version or the
book library version of the string and header file, as appropriate.

The ccc.h header defines a small number of the utility functions to make life sim-
pler for the students. For example, a function round (x) does the same thing as
(int) (x + 0.5). A function uppercase returns a string with all lowercase char-
acters turned into uppercase—a feature that is inexplicably missing in the standard
library. Look at Appendix 2, Section A2.15 for a listing of these functions. There are
also definitions for 7 and e.

The graphics library is purposefully kept simple. There are just four shapes: points,
lines, circles, and text. To display a shape, make an object and send it to the graph-
ics window: cwin << circle. Students can learn the entire library in an hour. The
library has been ported to several major platforms.

There are two simple classes, Time and EmpToyee, that are used for many pro-
gramming examples. They add some realism and reinforce the concept that most
real-life programs do not just manipulate numbers and strings. These two are auto-
matically included with the ccc.h header.

Preface 1%

How to Use This Book

The material in this book is divided into three parts: the essential, the useful, and
the optional. To cover the essential material, simply skip over all side notes. It is
perfectly reasonable to ignore all side notes completely during lectures and assign
them for home reading.

Three of the side note sets are useful for the students, namely the Common Errors,
Productivity Hints, and Quality Tips. Students quickly discover the Common Errors
and read them on their own. You may need to encourage them to read the Quality
Tips. The Productivity Hints may be challenging to some students, but those with
some computer experience tend to find them very helpful.

The Random Facts and Advanced Topics are optional. The Random Facts provide
historical and social information on computing, as required to fulfill the “historical
and social context” requirements of the ACM curriculum guidelines. Most students
will read the Random Facts on their own while pretending to follow the lecture. You
will need to suggest those Advanced Topics that you think are important. By the
way, not all of them are truly “advanced”. Occasionally, alternative syntax (such as
the // comment delimiter) is explained in an Advanced Topic.

Most examples are in the form of complete, ready-to-run programs. The programs
are available electronically, and you can give them to your students.

Appendix 1 contains a style guide for use with this book. I have found it highly
beneficial to require a consistent style for all assignments. I realize that my style may
be ditferent from yours. If you have strong feelings about a particular issue, or if
this style guide conflicts with local customs, feel free to modify it. The style guide is
available in electronic form for this purpose.

Appendix 2 contains a summary of all C++ constructs and library functions and
classes used in this book.

To make it possible to smuggle this book into a curriculum that is otherwise based
on C or low-level C++, Appendix 3 contains a crash course in C that shows how
the higher-level C++ features map to C.

Acknowledgments

I'would like to thank my acquisitions editor Steven Elliot for encouraging me to
write this book, and my editor Regina Brooks at John Wiley & Sons for guiding
the book through the development process. Her many constructive suggestions
greatly improved this book, as did those of the reviewers: John Cordero, Uni-
versity of Southern California; Wanda Dann, Syracuse University; David G. Kay,
University of California, Irvine; Ron McCarty, Pennsylvania State University; Don
McKnight, Los Medanos College; Bruce Mielke, University of Wisconsin, Green Bay;

Preface

and Charles M. Williams, Georgia State University. Thanks to my student assistants,
Michael Carney, Darrel Cherry, and Jiaoyang Zhou, with their help with the ran-
dom facts and the code library, and to Lisa Passmore of John Wiley & Sons for her
photo research. At Publication Services, Jerome Colburn did a splendid job with
the copyediting; Jan Fisher adroitly handled the communications with John Wiley
& Sons; Kathryn Wright kept the production process well coordinated; and the art
was rendered expertly by Paul Edwards and his studio team. John Johnson of Teapot
Graphics designed the stunning cover. My love and apologies go once again to my
family, who had to suffer through yet another book project that never seemed to
end.

Contents

Preface v
Chapter 1 Introduction 1
1.1 WhatIs a Computer¢ 2
1.2 WhatIs Programming¢ 2
1.3 The Anatomy of a Computer 3
1.4 Translating Human-Readable Programs to Machine Code 12
1.5 Programming Languages 14
1.6 Programming Language Design and Evolution 15
1.7 Becoming Familiar with Your Computer 18
1.8 Compiling a Simple Program 22
1.9 Errors 25
1.10 The Compilation Process 27
1.11 Algorithms 30

Chapter 2 Fundamental Data

Types 37
2.1 Number Types 38
2.2 Input and Output 46
2.3 Assignment 49
2.4 Constants 55
2.5 Arithmetic 59
2.6 Strings 66

xii

Chapter 3 Objects

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Constructing Objects

Using Objects

Real-Life Objects

Displaying Graphical Shapes

Graphics Structures

Choosing a Coordinate System

Getting Input from the Graphics Window
Comparing Visual and Numerical Information

Chapter 4 Decisions

4.1
42
43
4.4
4.5
4.6
4.7
4.8
4.9

The if Statement
Relational Operators
Input Validation

The if/else Statement
Multiple Alternatives
Nested Branches
Logical Operations

De Morgan’s Law
Using Boolean Variables

Chapter 5 Functions

5.1
5.2
53
5.4
5.5
5.6
57
58
5.9
5.10
5.11

Eunctions as Black Boxes
Writing Functions
Function Comments
Return Values

Parameters

Side Effects

Procedures

Reference Parameters
Variable Scope and Global Variables
Stepwise Refinement
From Pseudocode to Code

Contents

89

90
92
97
101
101
109
113
114

127

128
131
136
138
141
149
154
159
160

173

174
175
178
181
184
186
187
189
192
194
195

Contents

5.12
5.13
5.14

Walkthroughs
Preconditions
Recursion

Chapter 6 Iteration

6.1
6.2
6.3
6.4
6.5
6.6

Simple Loops

Other Loop Statements
Common Loop Types
Simulations

Nested Loops

Block Scope

xiti

203
207
2410

231

232
238
248
259
262
267

Chapter 7 Testing and Debugging 289

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Unit Tests

Selecting Test Cases
Test Case Evaluation
Assertions

Program Traces

The Debugger
Strategies

Debugger Limitations

Chapter 8 Classes

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Discovering Classes

Interfaces

Encapsulation

Member Functions

Default Constructors

Constructors with Parameters

Accessing Data Fields

Comparing Member Functions with Nonmember Functions
Object-Oriented Design

290
292
294
297
298
299
310
341

321

322
323
327
329
332
334
338
339
343

Xiv Contents

Chapter 2 Vectors and Matrices 371

9.1 Using Vectors to Collect Data Items 372
9.2 Vector Subscripts 376
9.3 Vector Parameters and Return Values 383
9.4 Simple Vector Algorithms 386
9.5 Parallel Vectors 390
9.6 Vectors as Object Data 394
9.7 Matrices 399
Chapter 10 Files 427
10.1 Reading and Writing Text Files 428
10.2 Example: Reading Input Data in a Graphics Program 429
10.3 Command Line Arguments 431
10.4 Random Access 436
Chapter 11 Modules 451
11.1 Separate Compilation 452
11.2 Designing Header Files 452
11.83 Breaking Up a Program into Multiple Source Files 457
11.4 Sharing Variables and Constants between Modules 463
11.5 Projects 466
Chapter 12 Algorithms 477
12.1 Selection Sort 478
12.2 Profiling the Selection Sort Algorithm 480
12.3 Analyzing the Performance of the Selection Sort Algorithm 482 3
12.4 Merge Sort 484 i
12.5 Analyzing the Merge Sort Algorithm 487
12.6 Searching 491

Contents

12.7
12.8
12.9

Binary Search
Searching and Sorting Real Data
The Efficiency of Recursion

Chapter 13 AN Introduction to
Data Structures

13.1
13.2
13.3
13.4
13.5

Vector-Based Linked Lists

Dynamic Memory Allocation

Linked Lists with Dynamic Memory Allocation
List Element Access with a Cursor

Binary Search Trees

Chapter 14 |Inheritance and
Polymorphism

14.1
14.2
143
14.4
14.5
14.6

Inheritance

Calling the Base-Class Constructor
Calling Base-Class Member Functions
Polymorphism

Virtual Functions

Class Relationships

Appendix A1 C++ Language
Coding Guidelines

Al1
Al12
Al3
Al4
AlS
Al.6
Al7
Al8

Introduction
Modules
Functions
Variables
Constants
Classes
Control Flow
Lexical Issues

492
495
497

509

510
515
520
523
535

953

554
557
558
562
567
575

587

587
588
590
591
592
593
593
594

xvi

Appendix A2

Contents

C++ Language

Summary 599

A2.1 Types 599

A2.2 Variables 599

A2.3 Expressions 600

A2.4 Classes 603

A2.5 Functions 604

A2.6 Statements 605

A2.7 Pointers 608

A2.8 Mathematical Functions 609

A2.9 Strings 610

A2.10 Vectors and Matrices 611

A2.11 Input and Output 611

A2.12 Graphics 612

A2.13 Time 614

A2.14 Employee Records 614

A2.15 Life without ccc.h 614
Appendix A3 Moving from C++

to C 617

A3.1 Data Types and Variables 617

A3.2 Input and Output 618

A3.3 Functions 620

A3.4 Arrays 622

A3.5 Strings 627

A3.6 Structures 637

A3.7 Files 639

A3.8 Dynamic Memory Allocation 641

Glossary 643

Photocredits 653

Index 655

INntroduction

Objecti
*

*

ves

To understand the activity of programming

To learn about the architecture of computers

To learn about machine languages and higher-level programming languages
To become familiar with your compiler

To compile and run your first C++ program

To recognize syntax and logic errors

Chapter 1. Introduction

What Is a Computer?

You have probably used a computer for work or fun. Many people use computers for
everyday tasks such as balancing a checkbook or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted. More importantly,
the computer presents you the checkbook or the term paper on the screen and lets
you fix up mistakes easily. Computers make good game machines because they can
play sequences of sounds and pictures, involving the human user in the process.

Actually, what makes all this possible is not just the computer. The computer
must be programmed to perform these tasks. One program balances checkbooks; a
different program, probably designed and constructed by a different company, pro-
cesses words; and a third program plays a game. A computer itself is a machine that
stores data (numbers, words, pictures), interacts with devices (the monitor screen,
the sound system, the printer), and executes programs. Programs are sequences of
instructions and decisions that the computer carries out to achieve a task.

Today’s computer programs are so sophisticated that it is hard to believe that they
are all composed of extremely primitive operations. A typical operation may be one
of the following.

Put a red dot onto this screen position.

Send the letter A to the printer.

Get a number from this location in memory.
Add up these two numbers.

If this value is negative, continue the program at that instruction.

Only because a program contains a huge number of such operations, and because the
computer can execute them at great speed, does the computer user have the illusion
of smooth interaction.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, print your term paper, and play a game. In contrast,
other machines carry out a much narrower range of tasks; a car drives, and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

What Is Programming?

A computer program tells a computer, in minute detail, the sequence of steps that
are needed to fulfill a task. The act of designing and implementing these programs
is called computer programming. In this course, you will learn how to program a
computer—that is, how to direct the computer to execute tasks.

