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_Prefacé

Rgcént advances in quantum electronics have brought into use the infrared
and visible range of electromagnetic waves. They now permitted us to build

new systems for the application of optical information processing and -
communication. ‘The impact of laser communication and wave-front .

reconstruction has provided an interesting relationship between optics and
information theory, a trend that has grown quite rapidly since the invention
of intensive coherent light sources in the carly 1960s. Light not only
provides a major source of energy, but also is a yery important source of
information. Therefore it is my purpose in writing this book to’bring into
-Closer view this intimate relationship between -optics and informatioh
theory. The contents of this book were mainly derived from several
classical articles, ‘particularly those by Gabor. and Brillouin,
- The manuscript of this book has been used as lecture notes in my classes
in optics and information theory, and the material was chosen to fit the
general interest of my students in electrical engineering. However, the
book may also serve interested physicists and members of technical staffs.
'The book’s eight chapters range from basic information theory, optics and
information to the quantum effect on information transmission. The basic
- approach centers around the entropy theory of information. 3
The contents of this book have been used in a one-quarter course in
optics and information theory at Wayne State University. Most of the
- students were in their first year of graduate studies. I have found that it is
occasionally possible to teach the whole book without significant omis-
sions, and with very limited additional material the text may be used in a

full-semester course. The book in its present form is not intended to cover

the vast domain of optics and information theory, but is restricted to an
area I consider particularly importardt and interesting. ,

I believe that optics and information theory are at the threshold of a
major technical revolution. Much remains to be done before optical
information and transmission can become a widespread practical reality.
The basic requirement for rapid progress in optical information and

, . vil




transmission should be to begin with careful imaginative experimental
work based on a deep appreciation of the theoretical foundations that have
already been established n part. - o

In view of the gregt number of contributors in this area, I apologize for
possible omission of appropriate references in various parts of this book.
The excellent article “Light and Information” by Gabor and the book
Science and Information Theory by Briliouin deserve special mention. Iam
deeply indebted to these two authors. _ A
. Tam grateful also to Dr. H. K. Dunn, retired member of the techpical staff
pf Bell Telephone Laboratories, for his encouragement, criticism, and
technical support during the preparation of the manuscript. I also express
my appreciation to Mr. A. Tai and Mr. T. Cheng, for proofreading and for
Preparing illustrations; Mrs. Sylvia Wasserman ahd Miss Mai Chen, for
their excellent typing of the manuscript; Mrs. ‘K. Y. Ma, for her
encouragemeiit -and for proofjeading most parts of the manuscript; my
students, for their comstant jnterest and motivation; and finally, tb-my wife

- and children, for their unbounded love, patience, and encouragement.

_ Ppetroit, Michigen -~ . 0 : " | FRANCIST.S.YU"'
- June 1976 o ' ' :
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Introduction to
Information "Transmission

In the physncal world {ight is not only part of the mainstream of energy, -
‘that supports ‘life, but also provides us with important sources of

information. One can easily imagine that without light present elvﬂlza '
tion could never exist. Furthermore, humans are equipped with a pair of
exceptionally good, although not perfect, eyes. With: the comblnatxon of
an intelligent brain and remarkable eyes, humans were able to advance
‘themselves above the rest of the animals in the world. It is undoubtédly
true that, if humans had not been equipped with eyes, they would not
have evolved into their present form. In the presence of light, humans are
able to search for the food they need and the art they enjoy, ang to
explore the unknown. Thus light, or rather optics, has provided us with a
very useful source of information whose apphcatlon can range from very |
abstract artistic to very sophisticated scientific uses.

- The purpose of this text is to discuss the relationship between optics .
and information transmission. However, it is emphasized that it is not our
intention to consider the whole field of IOptics and information theory, but

rather to center on an area that is nnportant and interesting to us.

. Prior to going into a detailed discussion of optics and information, we
devote this first chapter to the fundamentals of information transmission.
However, it is notéd that information theory was not originated by optlcal
physicists, but rather by a group of mathematically oriented electrical
engineers whose original interest was centered on electrical communica-
tion. Nevertheless, from the very beginning of the discovery of informa-
 tion theory, interest in the application has never totally been absent from
the optical standpoint. As a result of the recent advances in modern
optical information processing and optical communication, the, relation-
ship between optlcs and lnformatlon theory has grown more rapldly than .

ever.
 Although everyone seems to know the word information, a fundamen-
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2 Introduction to Information Transmission

tal theoristic concept may not be the case. Let us now define information
theory. Actually, information may be defined in relation to several
different disciplines. In fact, information may be defined according to its
applications but with the identical mathematical formalism as developed
in the next few sections. From the viewpoint of pure mathematics,
information theory is basically probability theory. We see in Sec. 1.1 that
without probability there would be no information theory. But, from a
physicist’s point of view, information theory is essentially an entropy
theory. In Chapter 4, we see that without the fundamental relationship
between entropy and information theory, information theory would have
no useful application in physical science. From a communication en-
gineer’s standpoint, information theory can be considered an uncertatnty
theory. For example, the more uncertainty there is about a message we
have received, the greater the amount of information the message
contained. T '

Since it is not our intention to define information theory for all fields of
interest, we quickly summarize: The beauty and greatness of information
theory is its’ application to all fields of science. Application can range
from the very abstract (e.g., music, biology, psychology) to very sophisti-

~cated scientific research. However, in our present introductory version,
we consider a concept of information from a practical communication
standpoint. For example, from the information theory viewpoint, a
perfect liar is as good an informant as a perfectly honest person, provided
of course that we have the a priori knowledge that the person is a perfect

_ liar or perfectly honest. One should be cautious not to conclude that, if one
cannot be an honest person, one should be a liar. For, as we may all agree,
the most successful crook is the one that does not look like one. Thus we
see that information theory is a guessing game, and is in fact a game -
theory. ' ' '
In general, an information system can be represented by a block
diagram, as shown in Fig. 1.1. For example, in simple optical communica-
tion, we have a message (an informdtion source) shown by means of
written characters, for example, Chinese, English, French, German, Then
we select suitable written characters (a code) appropriate to our communi-
cation. After the characters are selected and written on a piece of paper, the
information still cannot be transmitted until the paper is illuminated by
visible light (the transmitter), which obviously acts as an information
carrier. When light reflected from the written characters arrives at your
eyes (the receiver), a proper decoding (translating) process takes place,
that is, character recognition (decoding) by the user (your mind). Thus,
from- this simple example, we can see that a suitable encoding process
may not be adequate unless a suitable decoding process also takes place.
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NOISE
_ " | SOURCE o | | COMMUNICATION
SOURCE [ ncopgr [ TRANSMITTER F— " ANNEL .
SQURCE |
RECEIVER ;
- DECODER USER|

Fig.1.I' Block diagram of a obmmunic;atiOn system.

For instance, if I show you a Chinese newspaper you might not be able to
. decode the language, even if the optical channel is assumed to be perfect
' (i.e., noiseless). This is because a suitable decoding process requires a
priori knowledge of the encoding scheme (i.e., appropriate information
storage), for example, a priori knowledge of the Chinese characters. Thus
the decoding process can also be called a recognition process. =
Information theory is a broad subject which can not be fully discussed
in a few sections. Although we only investigate the theory in an
introductory manner, our discussion in the next few sections provides a

very useful application of information theory to optics. Readers who are .

interested in a rigorous treatment of information theory are referred to
the papers by Shannon[1.1-1.3] and the text by Fano(1.4].

- Information theory has two genersl orientations: one developed by
Wiener([1.5,1.6], and the other by Shannon{1.1~1.3]. Although both
Wiener and Shannon shared a common probablllstlc basis, there isa basxc
distinction between them.

The ‘significance of Wiener's work is that, 1f a signal (information) is
corrupted by some physical means (e.g., noise, nonlinear distortion), it
may be possible to recover the signal from the corrupted one. It is for this
purpose that Wiener develops the theories of correlation detection,

optimum prediction, matched filtering, and so on. However, Shannon’s
work is carried a step further. He shows that the signal can be optimally
transferred provided it is properly encoded. That is, the signal to be
transferred can be processed before and after transmission. In the
encoding process, he shows that it is possible to combat the disturbances
in the communication channel to a certain extent. Then, by a proper
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decoding process, the signal can be recovered optimally. To do this,
Shannon develops the theories of information measure, channel capacity,
coding processes, and so on. The major interest in Shannon’s theory is
efficient utilization of the communication chafinel. .

A fundamental theorem proposed by Shannon can be considered the
most surprising result of this work. The theorem can be stated approxi-
mately as follows. Given a stationary finite-memory information channel
having a channel capacity C, if the binary information transmission rate R
of the message is smaller than C, there are channel encoding and decoding .
processes for which the probability of error in information transmission
per digit can be made arbitrarily small. Conversely, if the information
transmission rate R is larger than C, there are no enccding and decoding
processes with this property, that is, the probability of error in informa-
tion transmission cannot be made arbitrarily small. In other words, the
presence of random disturbances in a communication channel does not,
by itself, limit transmission accuracy. Rather, it limits the transmission
rate for which arbitrarily high transmission accuracy can be accom-
plished.

In summarizing this brief introduction to information theory, we point
out again the distinction between the viewpoints of Wiener and of
Shannon. Wiener assumes in effect that the signal in question can be
processed after it has been corrupted by noise. Shannon suggests that the
signal can be processed both before and after its transmission through the
communication channel. However, the main objectives of these two
branches of information theory are basically the same, namely, faithful
reproduction of the original signal.

1.1 DEFINITION OF INFORMATION MEASURE

We have in the preceding discussed a general concept of information
transmission. In this section, we discuss this subject in more detail. Qur
first objective is to define a measure of information, which is vitally
important in the development of modern information theory. We first
consider discrete input and discrete output message ensembles as applied
to a communication channel, as shown in Fig. 1.2. We denote the sets of
input and output ensembles A ={a;} and B ={b;}, respectively, i =
L2,...,M,and j=1,2,...,N. It is noted that AB forms a discrefe -
product space. -

Let us assume that a; is an input event to the information channel, and
b; is the corresponding output event. Now we would like to define a
measure of information in which the received event b; specifies a. In
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A= {0;} INFORMATION 8 = {bj}

————e i B . i

CHANNEL

. Fig. 1.2 - Aninput-output communication channel.,

other words, we would like to define a measure of the amount of
information provided by the output event b; about the corresponding
input event a.. We see that the transmission of a, through the communica-
tion channel causes a change in the probability of a,, from an a priori P (a:)
to an a posteriori P(a/b;). In measuring this change, we take the
logarithmic ratio of these probabilities. It turns out to be appropriate for the
definition of information.measure. Thus the amount of information
- provided by the output event b, about the i inputevent a; can be defined as

T(ais ) & log, ES242)

It is noted that the base of the logarithm can be a value other than 2
However, the base 2 is the most commonly used in information theory.

bits. (1.1)

~* Therefore we adopt this base value of 2 for use in this text. Other base

values are also frequently- used, for example, logi and In = log.. The
corresponding units of information measure of these different bases are
hartleys and nats. The hartley is named for R. V. Hartley, who first
suggested the use of a logarithmic measure of information[1.7), and nat is
an abbreviation for natural unit. Bit used in Eq. (1.11),is a contraction of
binary unit.

- We see that Eq. (l 1) possesses a symmetnc property with respect to
- input event a and output event b;: :

- Ha;b)=I(b; a). (1.2)
This symmetric property of information measure can be easily shown:
P(a, by) P(b,/a,)

%% @ ay ~ 8 P(b) -

According to Eq (1.2), the amount of information provided by event b, -
about event a4, is the same as that provided by a, about b,. Thus Eq.(1.1) is
a measure defined by Shannon as mutual information or amount of
mformatlon transferred between event a; and event b;.

It is clear that, if the input and output events are statistically mdepen-
dent, that is, if P(a, b)) = P(a,)P(b,), then I (ai; by)=0.

Furthermore, if I (a:; b)) >0, then P(a, b)) > P(m)P(b,) that i is, there is
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a higher joint probability of a; and b, However, if I(ai; b;) <0, then
P(ai, b)) < P(a:)P(b), that is, there is a lower joint probability of a; and
b;.

As a result of the conditional probabnlmes P(ailb) = 1 and P(b;/a) <
1, we see that

_ I(a; by) = I(a), (1.3)
and _
- X I(ai; bi)SI(bi)’ (14)
where
I(a) 2 —log. P(a:), (1.5)
I(b;)) £ —log. P(b)). (1.6)

I(a) and I(b)) are defined as the respective input and output self-
information of event a; and event b, In other words, I(a:) and I(b;)
represent the amount of information provided at the input and output of
the information channel of event a; and event bj, respectively. It follows
that the mutual information of event 4 and event b; is equal to the
self-information of event a: if and only if P(a:/b;) = 1: that is,

I(a:; by) = Ia). 1.7

It is noted that, if 'Eq. (1.7) is true for all i, that is, the input ensemble, then
the communication channel is noiseless. However, if P(b;/a;)=1, then

I(aa;b-)=I(bA) (1.8)

If Eq. (1.8) is true for all the output cnsemble, then the information
channel is deterministic.

It is emphasized that the definition of measure of mformatwn can be
extended to higher product spaces. For example, we can define the mutual
information for a product ensemble ABC:

‘I(ai;bj/Ck)élnggﬁ(%‘;'/—;)g;—). (1.9)
Similarly, one can show that 7
I(ai; bilce) = I(b;; aifci), (1.10)
I(a:; bifex) = I(aifcv), (L1
and
. I(ai; bijcc) < I(bi/cw), (1.12)
where ‘
I(ai/cc) 2 —log: P(aifcv) (1.13)
and ;

I(hile) 2 —log: P(b;/ci) (1.14)
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represent the coudmonal self-information.
. Furthermore, from Eq. (1.1) we see that

I(ai; by) = I(a) - I(a/by) (1.15)
’ I(a; b)) =I(b)—I(bla). ~(1.16)

From the deﬁmtlon of _
I(ab,) 4 —log: P(a, b, a1

the self-mformatlon of the point (w, by) of the product ensemble AB one
can show that
I(aa;b:)=1(at)+f(b:)f-1(aubj)v (1-18)

Cohversely, | ‘
Haby) = I(a) + I(by) - Tasb). (1.19)

In concludmg this section, we point out that, for the mutual information
I{as; by) (i.e., the amount of information transferred through the channel)
there exists an upper bound, I(a) or I (by), whichever comes first. If the
information channel is noiseless, then the mutual information I(a, ; by) is

“equal to I(a), the input self-information of a. However, if the

_information channel is deterministic, then the mutual information is equal
to I(b;), the output self-information of b, Moreover, if the input-output of
the information channel is statistically independent, then no information
can be transferred. It is also noted that, when the joint probability
P(ai; b)) < P(a:.)P (b)), then I(a;; b;) is negative, that is, the information
.provided by event b, about event a. further déteriorates, as compared
with the statistically independent case. Finally, it is clear that the
deﬁmtlon of the measure of mformanon can also be applied to a higher
'product ensemble, namely, ABC - - - produce space. :

12 ENTROPY AND AVERAGE MUTUAL INFORMATION

In the Sec. 1.1 we defined a measure of information. We saw that
information thedry is indeed probability theory. _
In this section, we consider the measure of information as a random

" variable, that is, information measure as a random event. Thus the

measure of information can be described by a probability distribution
P(I), where I is the self-, conditional, or mutual information. _
" Since the measure of information is usually characterized by an

ensemble average, the average amount of information provided can be
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obtained by the ensemble average
E(Il= 2 IP(), (1.20)
I

where E denotes the expectation, and the summation ts over all I
. If the self-information a; in Eq. (1.5) is used in Eq. (1.20), then the
average amount of self-information provided by the input ensemble A is

M

E(l(a)] = 2 IP() = P(a)l(a), (1.21)

where [ (a.-) = —logAai)-
For convenience in notation, we drop the subscript i; thus Eq. (1.21)
can be written

I(A)2 -3 P(a)log: P(a) £ H(A), (1.22)

where the summation is over the input ensemble A
Similarly, the average amount of self-information provided at the
output end of the information channel can be written

I(B)2 -3 P(b)log. P(b) 2 H(B). (1.23)

As a matter of fact, Eqs. (1.22) and (1.23) are the starting points of
Shannon’s[1.1-1.3] information theory. These two equations are in
essentially the same form as the entropy equation in statistical
thermodynamics. Because of the identical form of the entropy
expression, H(A) and H(B) are frequently used to describe information
entropy. Moreover, we see in the next few chapters that Egs. (1.22) and
(1.23) are not just mathematically similar to the entropy equation, but that
they represent a profound relationship between science and information
theory[1.8-1.10], as well as between optics and information theory
[1.11, 1.12].

_ It is noted that entropy H, from the communication theory point of
view, is mainly a measure of uncertainty. However, from the statistical
thermodynamic point of view, entropy H is a measure of disorder.

In addition, from Egs. (1.22) and (1.23), we see that

H(A)=0, (1.24)

where P(a) is always a positive quantity. The equality of Eq. (1.24) holds
if P(a)=1 or P(a)=0. Thus we can conclude that

HA)<log. M, (1.25)

where M is the number of different events in the set of input events A,
thatis, A ={a}, i=1,2,..., M. We see that the equality of Eq. (1.25)
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‘holds if and only if P(a)= /M, that is, if there is equiprobability of all
the input events.
In order to prove the mequahty of Eq. (l 25), we use the well-known
inequality
log u<u—1. o (1.26)

Let us now consider that

H(A)—log. M=‘—zp(d)logzp(a%;p(a)logzM

1 ‘
= Z‘ p(a)log: Mo @) (1.27)
By.the use of Eq. (1.26), one can show that
H(A)—log: M < ) [Kli - p(a)] =0. (1.28)

Thus we have proved that the equality of Eq. (1.25) holds if and only if the
mput ensemble is equiprobable, p(a) =1/M. We see that the entropy
H(A) is maximum when the probability distribution a is equiprobable.
Under the maximization condition of H(A), the amount of mformatlon :
provided is the information capacity of A.

To show the behavior of H(A), we describe a simple example for the
case of M =2, that is, for a binary source. Then the entropy equation
(1.22) can be written ‘

H(p)=—plog.p — (1 p)log.(1-p), - (1.29

where p is the probablllty of one of the events.

From Eq. (1.29) we see that H(p) is maximum if and only if p =i.
Moreover, the variation in entropy as a function of p is plotted in Fig. 1.3.
It can be seen that H (p) is a symmetric function, having a maxunum
value of 1 bit at p =

Similarly, one can extend this concept of ensemble average to the
conditional self-information:

I(B/A)A 2Zp(a,b)logzp(b/a)éH(B/A) (1.30)

| We define H (B IA) as the conditional entropy of B given A. Thus the
entropy of the product ensemble AB can also be written

H(AB)-—ZEp(a,b)logzp(a b), (1.31)

where p(a, b) is the joint probability of cvents a and b.



