TAYLOR L.BOOTH

DIGITAL

NETWOIRKS
AND

COMPUTER
SYSTEMS

2nd edition

Digital
Networks
and
Computer
Systems

Second Edition

Taylor- L. Booth

Professor of Computer Science
and Electrical Engineering
University of Connecticut
Storrs, Connecticut

John Wiley & Sons, New York - Santa Barbara - London - Sydney - Toronto

Preface

A major shift has occurred in the field of the design and application of digital
systerms and computers. Integrated circuit technology has so sharply reduced the
price of both digttal computers and basic logic modules that many tasks tra-
ditionally performed by analogue circutts and systems are now carried out by
digital techniques The programmable hand calculator and microprocessor
have become a commonplace engineering tool while the speed and capdability of
minicomputers have allowed them to replace larger computer systems in a great
number of applications As a result, many engineers and scientists have found
1t necessary to understand the basic operation of digital systems and how these
systems can be designed tf they are to carry out particular information-processing
tasks assoctated with their work

This trend has produced a need for an introductory undergraduate course 1n
the digital-system area designed to provide a unihed overview of the interrelation-
ship between digital system design, computer organization, and machine-language-
level programming techniques In 1971 when the first edition of this text was
published no book existed that presented such a combination of topics The broad
acceptance of the first edition has proved that the perceived need did exist Most
up-to-date computer science curriculums include one or more basic Courses
that provide students with an understanding of computer organization In other
areas. such as engineering, the physical or life sciences, similar courses also have
been developed to provide the understanding needed to effectively employ
digital devices and computers as basic laboratory tools Students completing
an infroductory course based on this book are also prepared to go on to more
advanced courses that specialize in one particular aspect of digital system design

This book 1s orgamized to provide an integrated overview of the various classes
of digital mformation-processing systems and the interrelationship between the
hardware and software techniques that can be used to solve a particular problem
The umfying theme throughout the book s the conceptrthat the steps involved in
solving a problem must first be represented by an algorithm. It 1s then the designers
task to choose the best techniques to realize the given algorithm. In some cases 1t
1s obvious that erther a hardware or a software solution should be used. How-
ever, there 1s an ever-increasing gray area between these two approaches in which
many different alternatives must be considered before the best solution can be
dentified By giving the student a view of the interdependencies of logic design,

vili Preface

digital system design, and machine-level programming, it is possible to prpvide an
appreciation of how all of these different areas of computer technology interact.

At the University of Connecticut this book is used in the first professmnal-
level computer science course. Since the only prerequisite to this course is an
introductory programming course, many students from areas such as engineer-
tng, mathematics, statistics, the physical sciences, the life sciences, as well as
students planning on majoring in computer science take this course. This serves
the dual purpose of preparing students for advanced study in the computer science
area and of giving other students an overview of digital networks and computers
beyond that presented in the introd\{ctory programming course. : '

All computer science and electrical engineering majors take this course as a
required course. Because of scheduling considerations, most of these students
take the course during the first semester of their sophomore or junior year. How-
ever, many freshmen have completed this course without difficulty since there
is no specific mathematical background required of the student other than an
understanding of high-school-level mathematics.

At other schools this book is suitable for an introductory digital systems course
such as envisioned by the COSINE Committee of the Commission on Education
* of the National Academy of Engineering or for courses I3 or 16 of the ACM Curri-
cutlum 68 (Communications of the ACM, Mar¢h 1968, pp. 151-197). A revised
ACM curriculum recommendation is currently being developed and this text
would be ideal for course CS-4*, Introduction to Computer Organization, con-
tained in that curriculum.

The sequence in which the material is presented provides an orderly and logical
transition from the basic ideas of representing digital information and perform-
ing basic logical operations through the idea of complex information processing
systems and programs. Chapter 1-gives a.brief overview of the various topics dis-
cussed in the book and their interrelationships. Chapters 2, 3, and 4 present a
discussion of the techniques that can be used to represent and operate upon in-
formation in digital form. The material in Chapters 5, 6, and 7 provide an in-
troduction to basic switching theory and combinational logic network design.
The main concepts of switching theory are presented in a straightforward manner
without excessive formalism. This material also’illustrates many of the standard
logical circuits encountered in digital systems.

Chapters 8, 9, 10, and 11 deal with the idea of digital networks with memory.
Several of the basic memory elements are first discussed and then the idea of-a
synchronous sequential network is introduced. No attempt is made to treat
asynchronous networks. Chapters 10 and 11 are particularly important since they
show how the simple digital networks treated in the earlier chapters can be com-
bined to form complex digital systems. - :

Chapter 12 introduces the general ideas behind the operation of stored program
digital computers. In particular, a special simulated educational computer,

* Working report of ACM Committee on Curticulum in Computer Science ACM SIGCSE Bul-
letin Vol. 9. No. 2, June 1977.

Preface ix

called SEDCOM, is introduced to illustrate these ideas. SEDCOM is then used
in Chapter 13 to illustrate the idea of machine-language programming and the
various programming techniques that can be used to carry out different types of
information processing tasks on a small computer. Chapters 14 and 15 thea dis-
cuss the general structure of assembler- and procedure-oriented languages and
the translator programs that can be used to transfer source-language programs
into object-language programs. _

At the University of Connecticut we cover the first 14 chapters in detail and
briefly discuss the material in Chapter 15 as time permits at the end of the semester.
Dr. Bernard Lovell of our faculty has developed a program to simulate SEDCOM
on our Computer Center’s IBM 360/65. We therefore require our students to
actually write and run a number of home problems in Chapters 13 through 15 on
this simulated computer. Students can also use special logic breadboards in our

digital system laboratory to obtain additional insight into the operation of digital
networks. ’

In order to aid the student and help the independent reader, several simple
exercises are included at the end of each section to illustrate the material of that
section. The answers to many of these exercises are included in Appendix 2.
Several home problems are included at the end of each chapter. These problems
are comprehensive in nature; they extend the material contained in the chapter
and start the student thinking about one or more new concepts that will be dis-
cussed in one of the following chapters. The references at the end pf the chapter
guide the reader who is interested in the further exploration of a given area. A
Teacher’s Manual is available from the publisher on request for those instructors
‘who adopt the text for classroom use.

[am indebted to the many faculty members who used the first edition of this
book and who have sent me helpful suggestions about ways to improve presenta-
tions of particular topics or new material to be included. Another very imprtant
and continuing source of suggestions and comments have been from my col-
leagues; Bulent Dervisoglu, Bernard Carey, Yi-Tzuu Chien, Thomas Gilkey,
Richard Hart, Ralph Kochenberger, Bernard Lovell, Howard Sholl, and John
White who have made many useful comments over the past six years as they
have taught from this book. The revision of the text was made much easier by the
ability of Mrs. Jean Hayden to transform my rough notes and corrections into
manuscript form. Finally, I thank my wife, Aline, for her patience and encourage-
ment throughout the whole revision process.

Storrs, Connecticut, 1977 Taylor L. Booth

Contents

CHAPTER 1 Introduction to Digital Systems |

Introduction 1
Algorithmic Processes 3
Digital Networks 10
Computer Programming 17
Summary 20

TN VIR

CHAPTER 2 Representation of Information In ngltal
. Form 23

T

Introduction 23

Representation of Digital Information 24
Coding of Information 26
Digital-to-Analog Conversion 50
Analog-to-Digital Conversion 53
Summary 57

N

CHAPTER 3 Representation of Basic Logic Op’erationsr 61

Introduction 61

Representation of Logical Functions and Operations 62
Canenical Forms of Binary Functions 69

Reduction of Logical Specification to Logical Expresswons 73
Summary 82

BN

CHAPTER 4 Operations on Digital Information 85

Introduction 85

Notationa! Conventions 86
Logic Operations 89
Addition and Subtraction 93
Decisions and Relations 11§ *
Summary 119

S s~

-—

xii Contents

'CHAPTER 5 Combinational Logic Circuit Elements 123

Introduction 123

Logic Circuit Symbols 123
Electronic Logic Devices 126
Integrated Circuits 134
Mechanical Devices 137
Summary 139

S UE W -

CHAPTER 6 Switching Algebra and Logic Network
Realization 145 _

Introduction 145

Switching Algebra 145

Logic Network Reduction Using Boolean Algebra 154
Switching Algebra and the Design of Complex Combinational
Logic Networks 163

5. Summary 172

N N

CHAPTER 7 Minimization of Combinational Logic
Networks 177

Introduction 177

Minimization by the Map Method 180
Minimization by the Tabular Method 192
“Multiple Output Logic Networks 201
Summary 213

DL -

CHAPTER 8 Flip-Flops, Registers and Basic
Information Transfers 217

Introduction 217

Flip-Flops 217

Registers and Basic Transfer of Informatiop 232
Controlled Information Transfers 240

General Operations 248

Summary 254

e N

CHAPTER 9 Introduction to the Analysis and Design
_of Synchronous Sequential Networks 257

Introduction 257

Analysis of Synchronous Sequential Networks 258
Design of Synchronous Sequential Networks 268
Specification of Transition Tables and State Tables' 275
Summary - 291 _ ~ ,

g W=

Contents xiii

CHAPTER 10 Input, Output and Memory Elements 295

Introduction 295

The Interface Problem 295

Analog/Digital and Digital/Analog Conversion 302
Memory Devices 308

Summary 327

VP w N -

CHAPTER 11 Digital System Representation and
Design 327

Introduction 327

Basic Model of a Digital System 328
The Computation Process 335
Design of Digital Systems 350
Summary 372 - :

YR WN -

CHAPTER 12 Stored Program Information Processors
and Computers 375 _

Introduction 375
System Organization 376
The Control Unit 384
SEDCOM 395
Summary 413

e

CHAPTER 13 The Computing Process and
Machine-Language Programs 419

Introduction 419

Basic Programming Concepts 420
Subroutines 442

Numerical Calculations 463
Symbolic Calculations 474
Summary 481

L S

CHAPTER 14 Assembler Languages and Assemblers 485

Introduction 485

A Simple Assembler Language 486

The Structure of a Simple Assembler Program 500
Additional Assembler Concepts 511

Summary 519

woR -

xiv Contents

CHAPTER 15 Programming Languages and Compilers. 523

I Introduction 523

2 Programming Languages 524

3 The Translation Process 534

4 The Translation of Arithmetic Expressions 541
5 Translatton of Complete Statements 555

6 Summary 562

APPENDIX 1 Binary Codes for Character
Representation 5635

APPENDIX 2 Answers to Selected Exercises 569

INDEX 587

Introduction to Digital Systems

1. INTRODUCTION

Because of the increasing complexity of civilization, man has been foreeéd to
continually develop better and. more efficient techniques 1o process and utilize
information. Initial attempts at developing information processing aids centered
around improving methods of carrying out mechanical manipulations of numbers,
During the 17th century many of the leading mathematicians and scientists
developed calculating devices to aid them in their research. As industrial tech-
nology developed during the 18th and 19th centuries. these basic ideas were
refined and extended to develop complex mechanical devices that could be 1sed
to control machines and aid businessmen in performing repetitive calculations.and
bookkeeping tasks. L : : '

In the carly 1800's Charles Babbage proposed and attempted to construct a
device that he referred to as an analytical engine. Conceptually this device was
similar to our modern digital computers. Although he was able to build a simple
model of his machine, he was never able to complete the construction of a machine
that would handle practical problems. One of the reasons for his failure was that
the design called for so many moving mechanical parts that the inhereni {riction
between the various parts prevented satisfactory operation of the complete
machine. Even though Babbage failed to build a practical device, many of the
concepts that he developed laid the foundation for the design concepts of modern
computers. » .

Computers. as we know them today, have become practical only because we
have been able to replace mechanical devices with electronic devices. In the fate
1930’s and early 1940's a series of relay computers were built through the joint
effort of Harvard University, Bell Telephone Laboratories, and 1BM. Although
these computers operated satisfactorily, they were quickly superseded by electronic
computers.

2 Introduction to Digital Systems

In 1946 J. P. Eckert and Dr. J. W. Mauchly developed the first electronic com-

puter, the ENIAC, at the Moore School of Engineering at the University of
Pennsylvania. This computer contained 18,000 vacuum tubes. Vacuum tubes were
so unreliable at that time that the predicted mean time to failure was shorter than
the mean time to repair the device. Nevertheless the computer did work and was
- used by the U.S. Army for a number of years.
As the capability of computers and digital systems became better understood,
. many major technical advances were made. With the introduction of the transistor
in the early 1950s, it became possible to design and construct highly reliable
computers. Discrete transistor circuits have given way to integrated circuit
technology. It is now possible to piace thousands of electronic components on a
silicon chip that is at most a few centimeters square. The most visible result of
this development is the hand calculator, which can be used to carry out complex
numerical calculations.

Integrated circuits have had a major impact on both the design and applications
-of digital networks and computer systems. Their low cost has greatly expanded
the areas of application as well as reduced the price of complete computer systems.
We have also reached the point where a large number of manufacturers are
producing computers of various sizes and capabilities with prices that range from
a few thousands to many millions of dollars.

The majority of people who come in contact with computers can be classified as
occasional computer users. Their main interest is to use the computer to carry out
the routine data processing task or calculations needed as part of their work. By
using procedure-oriented languages such as FORTRAN, COBOL, or PL/1, these
people are able to carry out data processing tasks without worrying about the
internal organization or structure of the computer.

The high information processing rates of modern computers, however. makes
it possible to apply computers to a variety of information processing tasks that
were not even conceived of before the development of modern computers. Con-
sequently just as engineers or scientists must understand the limitations of the
physical laws of nature they must also develop an understanding and appreciation
of the laws dealing with the utilization, processing, and transmission of infor-
mation. .

This book has been designed for the person who has reached the point where a
computer is viewed as more than a calculating device to solve routine problems.
Consequently we first investigate the mathematical techniques that are used to
describe and analyze digital networks and systems. Next, the methods that may
be used to design combinational and sequential logic networks, which are found
in every digital system and computer, are presented. Once the operation of these
basic building blocks is understood we then consider how they can be used to form
complex data processing devices and general purpose digital computers. Finally.
we consider the various types of programming systems that can be used to program
a computer and how they are related to the efficiency of the overall information
processing system. ‘

Algorithmic Processes 3

2. ALGORITHMIC PROCESSES

Two of the major problems in designing a complex digital information processing
system concern:

1. The identification of the various fundamental information processing tasks
that must be accomplished.)

2. The specification of the component parts of the system needed to carry out
these tasks.

From an abstract viewpoint, the complete computational process carried out
by any digital information processor or computer can be formally represented by
the mathematical relationship

Flxy =y

where x represents the data presented to the processor, F(x) represents the com-
putation performed on the data and y represents the results of this computation.
The computation represented by F(x) can take many forms.

In the simplest case, the processor might be & simple logic network that takes the
current value of n input variables, [x,, x,. ..., x,], and immediately produces an
output f(x,. X;, .. ., x,). On the other hand, the processor might be a large-scale
computer system that measures the status of a chemical production process and
produces output signals to control the rate at which certain chemical reactions are
allowed to take place.

For each of these information processing tasks or any other tasks that we might
wish to perform, there is only one restriction that we must place on the computa-
tion represented by F(x). We must be sure that there is an explicit and unam-
biguous set of instructions that tells us how to perform the computation. This set
of rules is called an algorithm for the computation of F(x).

Alogorithm

We say that an algorithm for thccompuiation F(x) = yexists if there is an ordered
sequence of discrete steps that can be performed mechanically by a device such
that given v the device either:

(8) formsy = F(x) by executing these steps in the prescribed order, or
(b) indicates that no y exists that satisfies the conditions of the computation.

The device must require only a finite number of steps to reach one or the other of
these decisions.

4 Introduction to Digital Systems

From this definition we see that if we are to implement an algorithm on a
digital device we must reduce the steps of the algorithm to a sequence of e.lemcfl-
tary operations that can be performed by the device. In some cases the device will
consist of a simple digital network constructed to perform the complete computi-
tion in one step while in other cases the algorithm for the computation will be so
complex that it requires a Jarge number of steps and can only be implemented on
a large-scale digital computer. We now investigate the general properties of
algorithms as they relate to the design and utilization of digital information
processing devices. This will. in turn. alfow us to gain an insight into the interrefa-
tionship between the organization of digital networks and computers and the
computational processes that can be carried out by these devices. Our first task
is to define what we mean by an “elementary operation™, '

We automatically carry out an algorithm every time we perform a particular
mathematical or logical operation. However. we seldom give any thought to the
form that this algorithm takes. This is because our previous experience has taught
us to associate fixed reactions and interpretations to different mathematical
symbols. However, if we wish to describe how we carried out a given calculation
to someone who does not have our background we must explain. in great detail.
how the computation is performed. ‘

For example assume that we wish to compute the sum of the three two-digit
numbers

4 = u,a, B=bh,b, D=d.d,

Normally we would probably carry out the addition in our heads, write down the
answer ' o

Y=d4 4+ B4+ D=y,

and consider our problem solved. Most computers cannot simultaneously add
three numbers together. They must. instead. perform the calculation in two
steps as:

Step! R, =4+ B
Step2 Y =R, + D

Thus. if we assume that we can use the clementary operation of adding two
numbers together, our calculation can be completed by using a two-step algorithm.
However. consider what would happen if the computing device that we had could
only add two digits at a time. Should this be the case we would have to replace both
step | and step 2 with a sequence of steps that would describe how the two numbers
are to be added together digit by digit.

The elementary operation in this case would be digit addition which ¢an be
formally defined by

Algorithmic Processes 5

where s, is the unit sum of the two digits and ¢; is the carry. For example, let
u; = 9andr;, = S Then

FN RV

and we see that ¢; = land 5; =
It is possible to build a device to compute the two fum.uons

s = Fi(u.v)
and
o= Fylug. 1))

If we must use this device to compute
Y=A+ B+ D
they we could use the following algorithm:

Algorithm to compute

Y=A+ B+ D Example of Calculation
First Part - Performed Using Algorithm

Compute R=A4 + B Y =25+ 34 + 98
Step | ry = Fy(a,, b)) ry=9=F\(5,4
Step 2 ¢ = Fyla,, b)) ¢; =0 = Fy5,4)
Step3 p, = Fi(a,. by) P, =5=F|(2.3)
Step 4 ry =-Fup,, ¢)) r, =5 = Fi(5.0)
StepS m, = Fy(a,.b,) my, =0 = Fy,2.3)
Step6 n, = Fy(p,. ¢y) n, = 0= F,(5.0)
Step7 ¢; = Fi{m,, ny) c; =0=F(0,0)

Second Part
Y=R+D
Step8 = F(r,.d,) ¥y =T=F,09.8)
Step9 ¢} = Fyr,. dy) o =1 = Fy9.8)
Step 10 py = Fy(r,. dy) Py =4=F(5.9
Step Il v, = Fi(p5.) Y, =5=F4,1)
Step 12 m), = F,(r,.,dy) my = 1 = Fy5,9)
Step 13 ny = Fy(p),) n, =0=F,4,1)
Step 14 ¢, = F,(m}, ny) ¢, = 1= F(l,0)
Step 15 vy = Fi(c). ¢,) Yy = 1= F{(l.0)
Result Result

Y=y, Y=y, = 157

6 Introduction to Digital Systems

This algorith%n actually represents the following very simple addition process.

Stage 1 0. 0. Carty
Compute R =4 + B 0:2:5 A
0:3:4 B
0°5"9 R

Stage 2 I I Carry
ComputeY =R+D 0:.5:9 R
0:i9:8 D
157 Y

Thus we see that the set of basic operations that we can use affects the complexity
of an algorithm. The example also illustrates how we can solve the problem. When
we are working with a system there will usually be a sequence of operations that
are used enough times to justify attaching a functional name to them. Thus we
could define a function

FS(U, WMy=U~+V

that stands for the steps needed to form the sums in the above algorithm. The
algorithm then goes back to

Step ! R = Fy(A, B)
Step2 Y = F(R, D)

This idea of taking a sequence of simple operations and defining a new operation
to represent this sequence is used repeatedly throughout this book. In this way we
can concentrate on the important concepts being presented without worrying
about the fine details of how each step of the process is actually implemented.

Fiowchart Representation of Algorithms

One of the most convenient ways to represent an algorithm is by means of a
Sowchart or flow diagram. A flowchart is a graphical representation of a particular
algorithm that indicates the logical sequence of operations that are to be performed
by the device that executes the algorithm. The flowchart is basically a collection of
specially shaped boxes and directed lines. The contents of each box indicate which
operations are to be performed while the lines that interconnect the boxes indicate
the sequence in which the instructions are to be performed.

A very elaborate flowchart symbology has been evolved by computer pro-
grammers. However, for our needs in this book we will limit our flowchart symbols

Algorithmic Processes 7

-

The Beginning of a Process The End of a Process
(a) b)
An Instruction Box A Decision Box
Perform Operations Called for The exits are labeled and the appro-
In Box priate ore is taken according to the
(resylt of the computation calied for
< in the box
(d)

Figsre 1-1. Basic flowchart notation. (¢) The beginning of a process.
(b) The end of a process. (c) An instrpction box performs operations
called for in box. (d) A decision box. The exits are labeled and the
appropriate one is taken according to the result of the computation
called for in the box. ’

to those illustrated in Figure 1-1. Reference 5 at the end of this chapter presents an
extensive discussion of flowcharting techniques.
+~ Each instruction box and decision box will contain one or more expressions
describing how 'the basic operations are used to carry out the calculations. It is
assumed that the reader has been introduced to computer programming in
sufficient detail to be aware of how flowcharts are used. The following example
will serve to review these ideas.

Assume that we wish to calculate the roots of the equation ax? + bx + c. If
a # 0 then these roots are given by

. _ b+ /b — 4 —b — /b? — dac
e 2a '

"~ 2a

r2=

The simplest possible flowchart for finding r, and r, is given in Figure 1-2. How-
ever, if we examine this flowchart ‘We see that it is not much different from our

8 Introduction to Digital Systems

_=b +V b?-4ac
2a

. —-b-VYb2~ dac

2a

Figure 1-2. A simple flowchart for computing ry and r,.

initial statement of the problem. In particular, it assumes that we have two basic
operations corresponding to
. —bh+ (b~ dac
NHhta by = \.,
Zd
and

| —h— b — dac
./2(0, b\ () - 2“

that can be evaluated to find r, and r,. Since these two functions ate somewhat
specialized, it becomes desirable to break the calculation down into smaller parts.
Before we can do this, we must consider some of the problems that must be over-
come. ,
First, we note that if @ = 0 we have
¢

['1 = }'Z = -

h

provided we always assume that b is not aiso 0. Similarly we note that if
b2 — dac > 0 then the roots are real, while if 52 — dac < O we have the imaginary
roots

ry = —— Fy T e

~b + jJdac — B —b — j\/4ac = b?
2a

