

# Practice of Thin Layer Chromatography

Second Edition

JOSEPH C. TOUCHSTONE MURRELL F. DOBBINS

University of Pennsylvania
School of Medicine

A Wiley-Interscience Publication

JOHN WILEY & SONS INC.

New York • Chichester • Brisbane • Toronto • Singapore

Copyright @ 1983 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

#### Library of Congress Cataloging in Publication Data:

Touchstone, Joseph C., Dobbins, Murrell F. Practice of thin layer chromatography.

"A Wiley-Interscience publication." Includes bibliographical references and index.

Thin layer chromatography.
 Title. [DNLM:
 Chromatography, Thin layer.

II. Dobbins, Murrell F., joint author. QD 79.C8 T631p]

QD79.C8T68 1982 543'.08956 82-13654 ISBN 0-471-09766-7

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

This book is dedicated to our wives PHYLLIS and CLARE

### **Preface**

There are several widely used texts on thin layer chromatography (TLC) each of which is composed of two major sections: one section dealing with basics, the other dealing with specific compound class applications. In most instances, the chapters dealing with the basics of TLC do not cover their topics in enough depth and detail to enable the reader to carry out the operation described with confidence and success.

In this volume, we have attempted to describe in detail all the basic operations necessary for successful TLC in such a way that the reader may readily carry them out without hesitation. Rather than presenting complete literature reviews in each of the topic areas, we have drawn information from practical experience and from the literature describing practical methods. For best overall results, the beginning TLC practitioner should read this book from beginning to end before beginning any chromatography in order to familiarize himself or herself with the entire TLC process. This familiarity will allow each step to proceed more smoothly than might otherwise be possible.

Using this information, the worker in TLC can readily perform

the desired separations in his or her own laboratory.

This volume would not have been possible without the generous support of the Department of Obstetrics and Gynecology, School of Medicine, the University of Pennsylvania. Our thanks are also extended to the firms and individuals who granted permission to use

viii Preface

graphs and illustrations of equipment and procedures. The inclusion of equipment from a given supplier should not be construed as a recommendation, nor should failure to cite any product or supplier be construed as a lack of recommendation.

We also appreciate the devoted work of those who diligently worked to assemble the data: Mr. Philip Blackwood, Mrs. Clare R. Dobbins, Miss Cheryl Crowder. A very special thanks to Dr. Herman

Felton for constructive criticism of the manuscript.

Joseph C. Touchstone Murrell F. Dobbins

Philadelphia, Pennsylvania October 1982

# **Glossary of TLC Terms**

absorbent Substance that absorbs others, usually on the basis of wetting ability.

activation The process of heating a TLC plate to drive off moisture resulting from

layer preparation or adsorption from

the atmosphere.

adsorbent Substance adhering to another due to attraction between surface atoms of the two substances resulting from in-

the two substances resulting from intermolecular forces such as hydrogen bonding, electrostatic forces, and

charge-transfer forces.

adsorption chromatography

Process whereby a sample is separated by interaction between adsorptive forces of a medium (stationary phase)

and a solvent (mobile phase).

alumina Common adsorbent; Al<sub>2</sub>0<sub>3</sub>

argentation TLC

TLC employing silver nitrate impregnated in the layer material, usually silica gel. This impregnation changes the separation characteristics of the silica gel.

ascending chromatography

Chromatography in which the mobile phase moves upwards in the medium.

band

Chromatographic zone; region where the separated substance is concentrated.

bed

A column or layer of porous material containing the stationary phase, the interstices being filled with mobile phase.

CC

Column chromatography.

cellulose

Common medium for separation on a TLC plate.

chamber

Tank, jar, or vessel in which chromatographic separation takes place.

chamber saturation

Equilibration of the chamber or tank with mobile phase before the plate is placed into it.

chromatogram

A series of separated bands or zones in or on the stationary phase. The end product of the chromatography process.

chromatographic solvent

Solvent or mixture of solvents used as the mobile phase.

chromatographic system

Combination of the solvent, the sorbent, and components of the sample mixture. The interactions of the system determine the selectivity of the separation.

chromatography

A method of analysis in which the flow of a mobile phase (gas or liquid) promotes the separation of substances by differential migration from a narrow initial zone in a sorptive medium.

chromatoplate A thin layer plate; a layer of sorbent coated on a solid support such as glass, aluminum, or plastic.

continuous development

Development occurring over a distance that is usually greater than one plate length. Development is often expressed as a function of time rather than distance.

deactivation The process of making the chromatographic layer less active to decrease its separation capabilities. Usually done with water.

densitometry Measurement of a zone on a layer with an instrument that determines the optical density of the zone.

descending chromatography Chromatography in which the mobile phase moves downwards in the sorptive medium.

destructive detection A detection process that changes the chemical nature of the substance being detected in an irreversible manner. Sulfuric acid charring is one example.

detection

The process of locating a separated substance on a chromatogram, whether by physical methods, chemical methods, or biological methods.

developing solvent

Mobile phase.

development The movement of mobile phase in the chromatogram to effect separation.

diatomaceous earth A naturally occurring fine white powder, formed from the skeletons of microscopic marine organisms. Also called kieselguhr.

distribution coefficient amount of solute per unit of  $k = \frac{\text{stationary phase}}{\text{amount of solute per unit of}}$ mobile phase

xviii Glossary

eluent Solvent that removes a sample from a medium.

medium.

eluotropic series Series of solvents or solvent mixtures arranged in order of eluting power.

elution Removal of a solute from a sorbent by passage of a suitable solvent.

flat-bed chromatography

Common term for thin layer or paper chromatography occurring in a single plane. Sometimes called planar chromatography.

front

The visible boundary at the junction of the mobile-phase wetted layer and the "dry" layer. If a trough chamber is used with equilibration for development, the "dry" layer can contain amounts of the mobile phase.

GC (GLC) Gas (liquid) chromatography.

gradient elution

Development using a solvent system

whose composition is continuously
changing to effect separation; normally
done to increase the strength of the

eluent.

gradient TLC

Separation on a sorbent layer that has changing characteristics, that is, a gradient, from one portion of the layer through an adjoining portion of the

layer.

HPLC High pressure liquid chromatography or high performance liquid chromatography.

HPTLC High performance thin layer chromatography.

 $hR_f$  100 ×  $R_f$ 

impregnation

Loading of the sorbent with a liquid or a solid to change the chromatographic behavior of the layer. An example is NaNO<sub>2</sub> impregnated silica gel.

in situ

Occurring in place, e.g., on the thin layer.

ion exchange

Process whereby ions of the same charge replace each other in a given phase. In chromatography, it usually refers to situations where the stationary phase is made of an ionic polymer, which can be a synthetic resin or a specially treated mineral.

IF

Infrared.

kieselguhr

See "diatomaceous earth."

migration

Travel of sample in the medium in the direction of the mobile phase.

mobile phase

The moving phase (solvent or gas) of a chromatographic system.

MS

Mass spectrometry.

multiple chromatography

Chromatography repeated a number of times using the same or different mobile phases.

nondestructive detection

Detection of a substance on a chromatogram by a process that will not permanently change the chemical nature of the substance being detected. Visualization with iodine vapor is one example of a nondestructive method.

origin

Point where sample is applied.

partition

Divide or distribute between.

partition chromatography

Process in which sample is separated by partition between two liquid phases or between a gas and a liquid. One liquid is stationary while the other is mobile.

partition coefficient or ratio  $(K_d)$ 

Ratio of concentration of solute after partition between two immiscible phases:

 $K_d = C_S/C_m$ , where  $C_S$  and  $C_m$  are the concentration in the stationary and mobile phases, respectively.

PC

Paper chromatography.

PLC

Preparative layer chromatography. Used for the separation of larger amounts of substance than are normally separated with regular, analytical TLC. Normally a thicker layer (500-2000  $\mu$ ) or sorbent is employed than in TLC.

PMD

Programmed multiple development. The repeated development of a TLC plate with the same mobile phase in the same direction for gradually increasing distances.

polar

Highly charged, or with uneven electrical charges. Degrees of solubility in water can be used as a measure of polarity. In organic chemistry a polar molecule is one with a large dipole moment. In chromatography a polar molecule is one whoe distribution coefficient favors the polar phase. Affinity of substances for polar solvents depends on their dipole moments and their molecular volumes. It is clear that polarity in the strict sense is not always synonymous with solubility.

precoated plates or sheets

Commercially available thin layer plates or sheets ready for use in TLC.

resolution

The degree of separation between two substances expressed as.

Rs =  $\frac{1}{4}(\alpha - 1) \sqrt{N} (k'/k'+1)$ ,

where  $\alpha$  is the separation factor or the ratio of the capacity factors between two solutes  $k_1/k_2$ ; N is the number of theoretical plates in the

sorbent bed; k' is the average of k<sub>1</sub> and k<sub>2</sub>. The capacity factor k is the equilibrium ratio of total solute in the stationary phase to total solute in the mobile phase.

reversed-phase

Chromatography on a sorbent impregnated with a nonpolar and nonvolatile liquid as a stationary phase. Separation is effected by a polar mobile phase.

R<sub>f</sub> value

A ratio: the distance from the origin to the center of the separated zone divided by the distance from the origin to the solvent front.

R<sub>m</sub> value

 $Log \left(\frac{1}{R_f} - 1\right)$ 

sandwich chamber

Developing chamber formed from the plate itself, a spacer, and another nonlayered cover plate that stands in a trough containing the mobile phase.

secondary front

An additional solvent (mobile phase) front, lower than the primary solvent front. Occurs because components of the mobile phase have demixed and migrated apart from the other components.

silica gel

Silicic acid. The most widely used sorbent for TLC. Also used in column chromatography.

solvent

Liquid used for mobile phase. Not identified a priori with mobile phase.

solvent front

The forwardmost point of the mobile phase during development.

sorbent

A generalized term for the chromatographic stationary phase in which the nature of the force (adsorption, ion exchange, or reversed phase) is not specified. starting point line

Position on chromatogram where the sample is applied. Usually 10-20 mm from the bottom of the plate. Also called the origin.

Glossary

stationary phase

The phase of the chromatographic system that is made up of the surface of an adsorbent or liquid held by the support of a partition or gel system.

stepwise elution

Development using an eluent whose composition is changed using discontinuous, stepped gradients, in contrast to gradient elution.

support

The sheet of glass, plastic, or aluminum upon which the TLC sorbent is coated. Gives physical strength to the layer.

tailing

Incomplete separation of zones, often resulting in elongation of a zone.

TLC

Thin layer chromatography (chromatogram).

TLG

Thin layer gel chromatography employing a gel, such as Sephadex, coated on a glass plate for the separation of molecules predominantly according to their size.

two-dimensional chromatography

Successive development of a chromatogram in directions orthogonal to each other with the same or different mobile phase.

two-dimensional development

A two-step development technique in which a plate is first developed in one mobile phase, then dried, turned through 90°, and developed in a second, different mobile phase.

UV

Ultraviolet light.

zone (also spot or band)

The distribution of the solute or separated compound on the stationary phase before, during, and after chromatography.

# **Contents**

| GLOSSARY O | F TLC                            | TERMSxv                                                       |  |  |
|------------|----------------------------------|---------------------------------------------------------------|--|--|
| CHAPTER 1  | BASI                             | CS OF THIN LAYER CHROMATOGRAPHY                               |  |  |
|            | 1.1<br>1.2<br>1.3<br>1.4         | Introduction                                                  |  |  |
| CHAPTER 2  | PREPARATION OF THIN LAYER PLATES |                                                               |  |  |
|            | 2.1                              | Backing Supports for Sorbent Layers                           |  |  |
|            | 2.3                              | Available Sorbents for Preparing Plates 19 2.3.1 Introduction |  |  |
|            | 2.4                              | Silica Gel (Silicic Acid)                                     |  |  |
|            |                                  | Alumina                                                       |  |  |
|            | 2.6                              | Cellulose29                                                   |  |  |

|           | 2.7<br>2.8<br>2.9<br>2.10<br>2.11<br>2.12                                   | 2.6.1 Preparation of Cellulose Slurry     |  |  |  |
|-----------|-----------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| CHAPTER 3 | COMME                                                                       | COMMERCIAL PRECOATED PLATES               |  |  |  |
|           | 3.1                                                                         | Introduction                              |  |  |  |
| CHAPTER 4 | PREPA                                                                       | PREPARATION AND APPLICATION OF THE SAMPLE |  |  |  |
|           | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9<br>4.10         | Introduction                              |  |  |  |
| CHAPTER 5 |                                                                             | THE MOBILE PHASE 5.1 Introduction         |  |  |  |
|           | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br>5.9<br>5.10<br>5.11 | Introduction                              |  |  |  |