
Fundamentals of Electronic Devices

DAVID A. BELL

Fundamentals Electronic **Devices**

(内部交流)

David A. Bell

Lambton College of Applied Arts and Technology Sarnia, Ontario, Canada

RESTON PUBLISHING COMPANY, INC.

Reston, Virginia 22090

A Prentice-Hall Company 5504909

Library of Congress Cataloging in Publication Data

927 C

Bell, David, 1930— Fundamentals of electronic devices.

1. Semiconductors. I. Title. TK7871.85.B3786 621.3815 74-16377 ISBN 0-87909-276-9

© 1975 by

Reston, Publishing Company, Inc.

A Prentice-Hall Company

Box 547

Reston, Virginia 22090.

All rights reserved. No part of this book may be reproduced in any way, or by any means, without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

Preface

My objectives in this book are to clearly explain the operation of all important electronic devices in general use today and, also, to give the reader a thorough understanding of the characteristics, parameters, circuit applications, and limitations of each device at a two-year college level.

The text commences with the study of basic semiconductor theory and pn-junction theory which is essential for an understanding of solid-state devices. A separate chapter explains the semiconductor diode. Diode characteristics, parameters, equivalent circuits, graphical analysis, applications as a rectifier, and the diode data sheets are all covered in detail.

Bipolar junction transistor theory is treated in depth in Chap. 4, with the origin of r-parameters, h-parameters, and both equivalent circuits explained. In Chap. 5, the basic transistor circuits are analyzed for voltage gain, current gain, power gain, input impedance, and output impedance. The analysis is performed by h-parameters, and simplifying approximations are used throughout. Chapter 6 is devoted to transistor biasing techniques,

xii PREFACE

while transistor manufacturing methods and data sheets are among the topics covered in Chap. 7. Transistor power dissipation, frequency response, noise, and switching are also treated in Chap. 7.1

Chapters 8 and 9, on Zener and tunnel diodes, cover such topics as Zener diode voltage regulators and tunnel diode amplifiers. The next three chapters cover field effect transistors. Chapter 10 explains the theory of operation of the various types of FET's, as well as FET construction, data sheet, and equivalent circuit. Basic FET circuits are studied in Chap. 11, and FET biasing is treated in Chap. 12. SCR's, UJT's optoelectronic devices, miscellaneous devices, and integrated circuits are dealt with in Chaps. 13 through 17. Among the topics included are programmable UJT's, solar cells, liquid-crystal cells, piezoelectric crystals, VVC diodes, and IC amplifiers. Since electron tubes are still in wide use, the final chapter covers its varied forms: the vacuum diode, the vacuum triode, triode circuits, the tetrode, the pentode, the pentagrid converter, and, of course, the cathode ray tube.

Many examples are included in the text to introduce the student to applications of the device under study. A glossary of important terms and a set of review questions are provided at the end of each chapter. The mathematics level throughout does not go beyond algebraic equations and logarithms, simply because no higher math is necessary to fulfill the purpose of the book. It is expected that students will have already studied basic electricity, or that they will be studying this subject concurrently with their devices course.

It is hoped that this book will prove useful both for the study of electronics and as a reference text.

DAVID A. BELL

Contents

PREFACE

Chapter	1 BASIC SEMICONDUCTOR THEORY]
1-1	Introduction, 1	
1-2	The Atom, 1	
l-3	Electron Orbits and Energy Levels, 3	
1-4	Energy Bands, 4	
1-5	Conduction in Solids, 5	
16	Conductors, Insulators, and Semiconductors, 7	
1-7	Bonding Forces Between Atoms, 8	
1–8	Semiconductor Doping, 9	
1-9	Effects of Heat and Light, 11	
1-10	Drift Current and Diffusion Current, 12	
	Glossary of Important Terms, 14	
	Review Ovestions, 16	

Chapt	er 2 pn-JUNCTION THEORY	18		
2-1	Introduction, 18			
2-2	The pn-Junction, 18			
2-3	Reverse Biased Junction, 22			
2-4	Forward Biased Junction, 24			
2-5	Temperature Effects, 26			
2–6	Junction Capacitance, 28			
2-7	Junction Equivalent Circuit, 28			
	Glossary of Important Terms, 29			
	Review Questions, 30			
Chapte	er 3 THE SEMICONDUCTOR DIODE	20		
3–1	Introduction, 32	32		
3–2	Diode Symbol and Appearance, 32			
3–3	Diode Fabrication, 35			
3-4				
3-5	Diode Characteristics and Parameters, 35			
3–6	Graphical Analysis of Diode Circuit, 37			
3–3 3–7	Diode Piecewise Linear Characteristics, 41			
3–7 3–8	Diode Equivalent Circuit, 43			
3–9	Half-Wave Rectification, 44			
3-9 3-10	Full-Wave Rectification, 50			
3–10 3–11	Diode Switching Time and Frequency Response, 53			
3-11	Diode Data Sheet, 55			
	Glossary of Important Terms, 57			
	Review Questions, 59			
Chapte	r 4 THE JUNCTION TRANSISTOR	61		
4–1	Introduction, 61	V 1		
4–2	Transistor Operation, 61			
4-3	Transistor Currents, 66			
4-4	Transistor Symbols and Voltages, 69			
4-5	Common Base Characteristics, 70			
46	Common Emitter Characteristics, 74			
4-7	Common Collector Characteristics, 78			
48	Transistor T-Equivalent Circuit and r-Parameters, 80			
4-9	h-Parameters, 81			
	Glossary of Important Terms, 86			
	Review Questions, 88			
Chapte	5 RASIC TRANSISTOR CIRCLISTO			
_		.90		
5-1 5-2	Introduction, 90			
5-2	Common Emitter Circuit, 90			
5–3	Common Emitter h-Parameter Analysis, 92			
5-4	Common Collector Circuit, 99			
5–5	Common Collector h-Parameter Analysis, 100			

CONTENTS

5–6 5–7 5–8	Common Base Circuit, 105 Common Base h-Parameter Analysis, 107 Cascaded Common Emitter Circuits, 113 Glossary of Important Terms, 115 Review Questions, 116	
Chapter	6 TRANSISTOR BIASING	118
6-1	Introduction, 118	
6–2	The dc Load Line and Bias Point, 119	
6–3	Fixed Current Bias, 123	
6-4	Collector-to-Base Bias, 125	
6–5	Emitter Current Bias (or Self Bias), 127	
6–6	Comparison of Basic Bias Circuits, 131	
6–7	Thermal Stability, 131	
6–8	ac Bypassing and ac Load Line, 134	
	Glossary of Important Terms, 138	
	Review Questions, 139	
Chapter	7 TRANSISTOR CONSTRUCTION,	
-		141
71	Introduction, 141	
$7-2^{-}$	Effects of Transistor Construction on Electrical Performance,	142
7–3	Processing of Semiconductor Materials, 143	
7-4	Alloy and Microalloy Transistors, 146	
7–5	Mesa Transistors, 148	
7–6	Diffused Planar and Annular Transistors, 150	
7–7	Transistor Packaging, 151	
7–8	The Transistor Data Sheet, 153	
7–9	Power Dissipation, 157	
7–10	Decibels and Frequency Response, 159	
7–11	Transistor Noise, 165	
7–12	Transistor Switching, 171	
	Glossary of Important Terms, 177	
	Review Questions, 179	
Chapter	8 ZENER DIODES	181
8–1	Introduction, 181	
8–2	Zener and Avalanche Breakdown, 182	
8–3	Zener Diode Characteristic and Parameters, 184	
8-4	Compensated Reference Diodes, 185	
8–5	Zener Diode Voltage Regulator, 188	
8–6	Regulator with Reference Diode, 193	
8–7	Other Zener Diode Applications, 193	
	Glossary of Important Terms, 195	
	Review Questions, 196	

viii CONTENTS

Chapter	9 THE TUNNEL DIODE	198			
9-1	Introduction, 198				
9–2	Theory of Operation, 198				
9-3	Tunnel Diode Symbol, Characteristics, and Parameters, 203				
9–4	Piecewise Linear Characteristics, 204				
9–5	Tunnel Diode Equivalent Circuit, 206				
9–6	Tunnel Diode Parallel Amplifier, 206				
9–7	Gain Formula for a Parallel Amplifier, 209				
9–8	Practical Parallel Amplifier Circuit, 210				
9-9	Graphical Analysis of a Parallel Amplifier, 213				
9–10	Tunnel Diode Series Amplifier, 215				
9–11	Gain Formula for Series Amplifier, 217				
9–12	Tunnel Diode Switch, 217				
9–13	Tunnel Diode Biasing, 219				
	Glossary of Important Terms, 220				
	Review Questions, 221				
Chapter	10 FIELD EFFECT TRANSISTORS	222			
10-1	Introduction, 223	223			
10-1	Principle of the <i>n</i> -Channel JFET, 223				
10-2	Characteristics of n-Channel JFET, 225				
10-3	The p-Channel JFET, 230				
10-5	JFET Data Sheet and Parameters, 231				
10-5	JFET Construction, 239				
10-7	The Insulated Gate FET or MOSFET, 240				
10-8	FET Equivalent Circuit, 245				
10 0	Glossary of Important Terms, 246				
	Review Questions, 248				
	Teconia Questions, 210				
Chapter	11 BASIC FET CIRCUITS	250			
11-1	Introduction, 250				
11-2	The Common Source Circuit, 250				
11-3	ac Analysis of Common Source Circuit, 252				
11-4	The Common Drain Circuit, 255				
11-5	ac Analysis of Common Drain Circuit, 257				
11–6	The Common Gate Circuit, 260				
11-7	ac Analysis of the Common Gate Circuit, 261				
	Glossary of Important Terms, 264				
	Review Questions, 265				
Chapter	12 FET BIASING	0.0=			
-		267			
12-1	Introduction, 267				
12-2	dc Load Line and Bias Point, 267				
12-3	Spread of Characteristics and Fixed Bias Circuit, 270				
12–4	Self Bias, 271				

CONTENTS

12-5	Self Bias with External Voltage, 274	
12-6	Drain-to-Gate Bias, 277	
12-7	Biasing MOSFETS, 279	
12-8	Design of FET Bias Circuits, 285	
	Glossary of Important Terms, 287	
	Review Questions, 288	
Chapter	13 THE SILICON CONTROLLED	
	RECTIFIER	293
13-1	Introduction, 293	
13-2	SCR Operation, 294	
13-3	SCR Characteristics and Parameters, 296	
13-4	SCR Specifications, 299	
13-5	SCR Control Circuits, 301	
13–6	The TRIAC and DIAC, 305	
13-7	Other Four-Layer Devices, 307	
	Glossary of Important Terms, 311	
	Review Questions, 313	
Chapter	14 THE UNIJUNCTION TRANSISTOR	315
14_1	Introduction, 315	
14-2	Theory of Operation, 315	
14-3	UJT Characteristics, 317	
14-4.	UJT Parameters and Specification, 319	
14-5	UJT Fabrication Methods, 322	
14-6	UJT Relaxation Oscillator, 323	
14-7	UJT Control of SCR, 327	
14–8	Programmable Unijunction Transistor, 328	
	Glossary of Important Terms, 330	
	Review Questions, 331	
Chapter	15 OPTOELECTRONIC DEVICES	332
15-1	Introduction, 332	
15–2	Photomultiplier Tube, 333	
15–3	The Photoconductive Cell, 335	
15-4	The Photodiode, 340	
15–5	The Solar Cell, 343	
15–6	The Phototransistor, 346	
15–7	The Photofet, 349	
15-8	Light-Emitting Diodes, 350	
15-9	Liquid-Crystal Displays, 352	
15–10	Optoelectronic Coupler, 355	
	Glossary of Important Terms, 355	
	Review Questions, 357	

Chapter	16	MISCELLANEOUS DEVICES	360			
16 1	Piezoelectricity, 360					
16–2		electric Crystals, 360				
16-3		Voltage-Variable Capacitor Diodes, 369				
16–4	Thermistors, 374					
		ry of Important Terms, 379				
		Questions, 380				
Chapter	17	INTEGRATED CIRCUITS	383			
17-1	Intro	duction, 383				
17–2	Mono	olithic, Thin-Film, Thick-Film, and Hybrid Integrated cuits, 383				
17-3		cation of a Monolithic Integrated Circuit, 386				
17–4		omponents, 389				
17-5		Differential Amplifier, 395				
17–6		fferential Amplifier, 403				
17-7		l Integrated Circuits, 407				
17-8	-	rated Circuit Packaging, 409				
	C	ry of Important Terms, 410				
		Questions, 412				
Chapter	18	ELECTRON TUBES	413			
18-1	Intro	duction, 413				
18– 2		Vacuum Diode, 414				
18–3	The V	Vacuum Triode, 418				
18 -4	Triod	e Characteristics, 419				
18-5	Triod	e Parameters, 423				
186	Comr	non Cathode Circuit, 425				
18–7	ac An	alysis of Common Cathode Circuit, 427				
18-8	Comr	non Plate Circuit, 431				
18–9	Comn	non Grid Circuit, 432				
18-10	Triod	e Biasing Methods, 433				
18-11	The T	Tetrode Tube, 436				
18-12	The I	Pentode, 439				
18-13	The V	Variable-Mu or Remote Cutoff Pentode, 441				
18-14	The I	Pentagrid Converter, 443				
18–15	The (Cathode Ray Tube, 445				
	Glossa	ry of Important Terms, 452				
	Revieu	v Questions, 456				
INDEX			460			

Basic Semiconductor Theory

I-I INTRODUCTION

The function of an electronic device is to control the movement of electrons. The first step in a study of such devices is to understand the electron (or what it is believed to be), and how it is associated with the other components of the atom. After such an understanding is reached the bonding forces holding atoms together within a solid, and the movement of electrons from one atom to another must be investigated. A result of the investigation is that the differences between conductors, insulators, and semiconductors, and the special properties of semiconductors become clear.

I-2 THE ATOM

The atom is believed to consist of a central nucleus surrounded by orbiting electrons (see Fig. 1-1). Thus, it may be compared to a planet with satellites

in orbit around it. Just as satellites are held in orbit by an attractive force of gravity due to the mass of the planet, so each electron is held in orbit by an *electrostatic* force of attraction between it and the nucleus.

The electrons each have a negative electrical charge of 1.602×10^{-19} coulombs (C), and some particles within the nucleus have a positive charge of the same magnitude. Since opposite charges attract, a force of attraction exists between the oppositely charged electron and nucleus. As in the case of the satellites, the force of attraction is balanced by the centrifugal force due to the motion of the electrons around the nucleus [Fig. 1–1(b) and (c)].

Compared to the mass of the nucleus, electrons are relatively tiny particles of almost negligible mass. In fact, we may think of them simply as little particles of negative electricity having no mass at all.

The nucleus of an atom is largely a cluster of two types of particles, protons and neutrons (Fig. 1-2). Protons have a positive electrical charge, equal in magnitude (but opposite in polarity) to the negative charge on an electron. A neutron has no charge at all. Protons and neutrons each have masses about 1800 times the mass of an electron. For a given atom, the

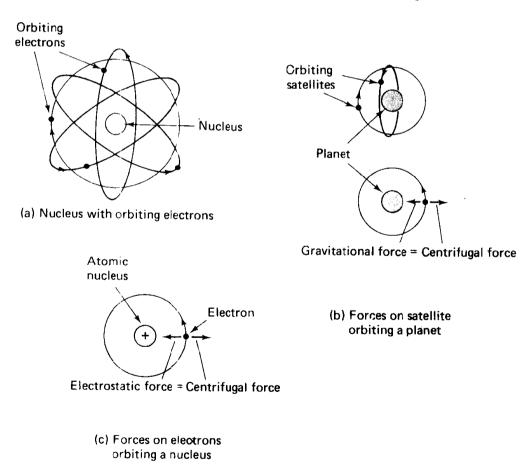


FIG. I=1 Planetary atom.

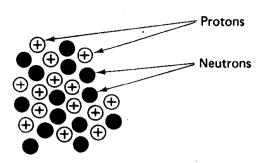


FIG. 1-2 Nucleus of a silicon atom.

number of protons in the nucleus normally equals the number of orbiting electrons.

Since the protons and orbital electrons are equal in number and equal and opposite in charge, they neutralize each other electrically. For this reason, all atoms are normally electrically neutral. If an atom loses an electron, it has lost some negative charge. Therefore, it becomes positively charged and is referred to as a positive ion. Similarly, if an atom gains an additional electron, it becomes negatively charged and is termed a negative ion.

The differences between atoms consist largely of dissimilar numbers and arrangements of the three basic types of particles. However, all electrons are identical, as are all protons and all neutrons. An electron from one atom could replace an electron in any other atom. Different materials are made up of different types of atoms, or differing combinations of several types of atoms.

The number of protons (or electrons) in an atom is referred to as the atomic number of the atom. The atomic weight is approximately equal to the total number of protons and neutrons in the nucleus of the atom. The atom of the semiconductor element silicon has 14 protons and 14 neutrons in its nucleus, as well as 14 orbital electrons. Therefore, the atomic number for silicon is 14, and its atomic weight is approximately 28.

I-3 ELECTRON ORBITS AND ENERGY LEVELS

Atoms may be conveniently represented by the two-dimensional diagrams shown in Fig. 1-3. It has been found that electrons can occupy only certain orbital rings or shells at fixed distances from the nucleus, and that each shell can contain only a particular number of electrons. The electrons in the outer shell determine the electrical (and chemical) characteristics of each particular type of atom. These electrons are usually referred to as valence electrons. An atom may have its outer or valence shell completely filled or only partially filled.

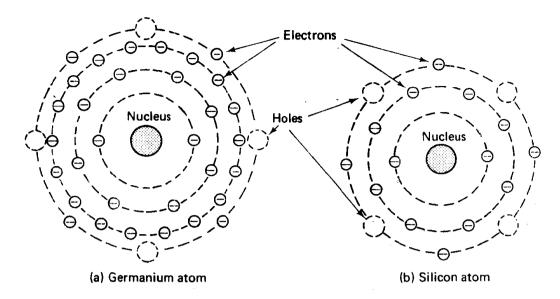


FIG. 1-3 Two-dimensional representation of silicon and germanium atoms.

The atoms of two important semiconductors, silicon (Si) and germanium (Ge), are illustrated in Fig. 1-3. It is seen that each of these atoms has four electrons in a valence shell that can contain a maximum of eight. Thus, we say that their valence shells have four electrons and four holes. A hole is defined simply as an absence of an electron in a shell where one could exist. Even though their valence shells have four holes, both silicon and germanium atoms are still electrically neutral, because the total number of orbital electrons equals the total number of protons in the nucleus.

The closer an electron is to the nucleus the stronger are the forces that bind it. Each shell has an energy level associated with it which represents the amount of energy that would have to be supplied to extract an electron from the shell. Since the electrons in the valence shell are furthest from the nucleus, they require the least amount of energy to extract them from the atom. Conversely, those electrons closest to the nucleus require the greatest energy application to extract them from the atom.

The energy levels considered above are measured in electron volts (eV). An electron volt is defined as the amount of energy required to move one electron through a potential difference of one volt.

I-4 ENERGY BANDS

So far the discussion has concerned a system of electrons around one isolated atom. The electrons of an isolated atom are acted upon only by the forces within that atom. However, when atoms are brought closer together as in a

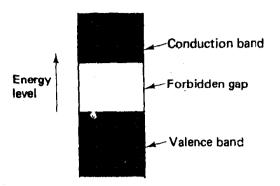


FIG. 1-4 Energy band diagram.

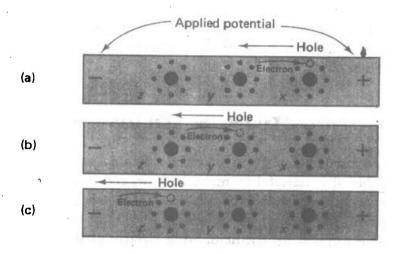
solid, the electrons come under the influence of forces from other atoms. The energy levels that may be occupied by electrons merge into bands of energy levels. Within any given material there are two distinct energy bands in which electrons may exist, the valence band and the conduction band. Separating these two bands is an energy gap in which no electrons can normally exist. This gap is termed the forbidden gap. The valence band, conduction band, and forbidden gap are shown diagrammatically in Fig. 1-4.

Electrons in the conduction band have escaped from their atoms, or are only weakly held to the nucleus. Conduction band electrons may be easily moved around within the material, by the application of relatively small amounts of energy. Much larger amounts of energy must be applied to extract an electron from the valence band or to move it around within the valence band. Electrons in the valence band are usually in normal orbit around a nucleus. For any given type of material, the forbidden gap may be large, small, or nonexistent. The distinction between conductors, insulators, and semiconductors is largely concerned with the relative widths of the forbidden gap.

1-5 CONDUCTION IN SOLIDS

Conduction occurs in any given material when an applied voltage causes electrons within the material to move in a desired direction. This may be due to one or both of two processes, electron motion and hole transfer. In electron motion, free electrons in the conduction band are moved under the influence of the applied electric field. Since electrons have a negative charge, they are repelled from the negative terminal of the applied voltage, and attracted towards the positive terminal. Hole transfer involves electrons which are still attached to atoms; i.e., those in the valence band.

If some of the energy levels in the valence band are not occupied by


electrons, there are holes where electrons could exist. An electron may jump from one atom to fill the hole in another atom. When it jumps, the electron leaves a hole behind it, and we say that the hole has moved in the opposite direction to the electron. In this way a current flows which may be said to be due to hole movement.

In Fig. 1-5(a), the applied potential causes an electron to jump from atom y to atom x. In doing so, it fills the hole in the valence shell of atom x, and leaves a hole behind it in atom y as shown in Fig. 1-5(b). If an electron now jumps from atom z, under the influence of the applied potential, and fills the hole in the valence shell of atom y, it will leave a hole in atom z [Fig. 1-5(c)]. Thus, the hole has been caused to move from atom x to atom y to atom z.

Holes may be thought of as positive particles, and as such they move through an electric field in a direction opposite to that of the electrons; i.e., positive particles are attracted towards the negative terminal of an applied voltage. It is more convenient to think in terms of hole movement, rather than in terms of electrons jumping from atom to atom.

Since the flow of electric current is constituted by the movement of electrons in the conduction band and holes in the valence band, electrons and holes are referred to as charge carriers. Each time a hole moves, an electron must be supplied with sufficient energy to enable it to escape from its atom. Free electrons require less application of energy than holes to move them, because they are already disconnected from their atoms. For this reason, electrons have greater mobility than holes.

The unit of electric current is the ampere (A). An ampere is defined as

FIG. 1-5 Conduction by hole transfer. (a) Electron jumps from atom y to atom x. (b) It fills the hole in atom x and leaves a hole in atom y. (c) If an electron jumps from atom x to atom y, it will leave a hole in atom x.