THE PRINCIPLES OF
COMPUTER
ORGANIZATION

G. MICHAEL SCHNEIDER

THE PRINCIPLES OF
- COMPUTER
ORGANIZATION

G. MICHAEL SCHNEIDER

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
MACALESTER COLLEGE ‘

~ EW YORK CHICHESTER BRISBANE TORONTO SINGAPORE

Production supervised by Ellen C. Baron

Cover and Text design by Karin Gerdes Kincheloe

Cover illustration by Steve Jenkins

Manuscript edited by Brenda Gniﬁng under the supervision
of Martha Cooley

~

Copyright © 1985 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections
107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to-

the Pcrmuslons Dppartmenl, John Wiley & Sons

L:brary of Congress Cctalogmg in Plbllcalidn Data:

Schneider, G. Michael. *
The principles of computer organization.

Includes Index

1. Computer architécture. 2. Aucmbler language (Com-
puter program language) 1. Title.
QA76.9.A73836 1985~ 001.64° 84-20853
ISBN 0-471-88552-5 ‘

Printed in. the United States of America
10987654321

N

This book is intended as a one-semester text for the course entitled CS3, “An Intro-

duction to Computer Systems,” as described in Curriculum *78 of the Association

for Computing: Machinery (ACM). It also contains material from course CS4,

“Introduction to Computer Organization,” and it would be appropriate for course

CS/1S 3, “Computer Organization and Assembly Language Programming,”

described in the fecent ACM Report on Small College Computer Science Cumcula.
A course-in computer organization has two quite different and distinct goals:

e To study broad, general concepts related to the structure and organi--
_ zation of all computer systems
e To learn the assembly language and architecture of one specific
system. :

The main focus of such a course must be the first of these two points: tt&ngay of
machine-independent concepts in computer organization. Technology is fleeting, and
today’s state-of-the-art computer system will be tomorrow’s antique. During their
professional careers, today’s students will encounter computers from many different
manufacturers, with quite different architectures and instraction sets. Concentrating
t0o early on the unique hardware capabilities and ideosynchrasies of one machine
can produce students with ‘“funnel vision” who feel comfortable with only one
approach to computer design and are either uncomfortable with or ignorant of other
structures. The ACM Report on Small College Computing Curricula alluded to this
problem when describing the course entitled “Computer Organization and Assembly
Language Programming.” The report warned that “caution must be taken to avoid
overemphdsizing the particular hardware in use.” Similarly, Curriculum *78, in its
description of course CS3, stated that * . . . concepts and techniques that apply to a
broad range of computers should be emphasxzed e : %
In light of this concern, Parts I and II of this text introduce the topics of infor-
mation representation and computer orgam%txon in a machine-independent fashlon.

SO L

—— s s e——

viili PREFACE

Part 1 (Chap-tcrs 2-5), “The Representation of Information,” discusses approaches
for representing the four basic data types that exist on computer systems: unsigned
binary, signed integers, characters, and floating point. The discussion includes a sur-
vey of a number of possible representational techniques, their theoretical underpin-
nings, and their advantages and disadvantages from the point of view of efficiency,
accuracy, and ease of implementation. It concludes with a discussion of how higher-
level data structures found in languages such as FORTRAN, COBOL, and Pascal
can be realized in terms of these more elementary hardware data types. .
Part II (Chapters 6~9), “The Design of an Idealized Computer,” develops in step-
“by-step fashion the organization and structure of the well known and almost univer-
sally used Von Neumann architecture. Each large-scale functional component—
memory, ALU, buses, 1/O, and processor—is separately introduced along with
important general concepts and principles associated with that functional unit. At
the conclusion of this section, these separate pieces are combined and integrated into
an idealized model of a Von Neumann computer of the type diagrammed in Figure
9-18. The text then introduces a range of different instruction formats and presents
some typical instruction sets of the type that students are most likely to encounter.
Finally, the overall fetch/execute instruction cycle of this idealized computer is
described along with its realization in both hardware and microcode.
By the end of Parts I and II of this text, the student will have a solid grounding
in the fundamental principles of information representation and computer structures
as they apply to a wide range of different systems. However, computer organization
is also an applied discipline, and it is important that students gain some experience
in programming a real, rather than an idealized, computer system. This system will
. preferably have an interesting architecture and will be representative of what is cur-
rently available in the marketplace. For this text we have chosen the PDP-11 family
of computers manufactured by the Digital Equipment Corporation. The PDP-11 is
by far the most widely used minicomputer in the world today, and its architecture
has influenced the design of a number of other systems. Its modest yet powerful basic
instruction set is relatively easy for a student to learn and master in a one-semester
course in assembly language. In addition, the PDP-11 instruction set can be executed
by all members of the VAX-11 family of computers, using what is called “compat-
ibility mode.” The VAX-11 is one of the most popular of the group of “supermini”
computers and is widely available in the computer science departments of colleges
and universities. Therefore, by choosing the PDP-11, we have selected a computer
that is interesting, important, and available to the widest possible range of students.
Part 111 (Chapters 10-18), “The Structure and Organization of an Actual Com-
puter System,” introduces the student to the PDP-11 and its assembly language,
MACRO-11. These chapters cover virtually all MACRO-11 features, including the
90 or so instructions in the basic instruction set, all 12 addressing modes, interrupt-
driven 1/O (Chapter 15), subroutines and parameters (Chapter 16), macros and'con-
ditional assembly (Chapter 17), and the floating point instruction set (Chapter 18).
The text contains a number of MACRO-11 programs and program fragments that
illustrate the language feature under discussion. We have chosen to treat MACRO-

PREFACE Ix

11 as a systems-oriented language rather than an applications programming lan-
guage. We feel that this approach is more representative of the actual. uses of assem-
bly language and can better exemplify the capabilities of MACRO-11. Therefore,
the examples presented in this section are primarily system-related and include such
tasks as normalizing floating point numbers, multibuffering input/output, generating
correct parity bits, performing extended precision arithmetic, managing a real-time

" clock, and producing a symbolic dump. In order to simplify input and output, which
in assembly language can be-quite complex, we have provided (in Appendix E) a set
of prewritten MACRO-11 1/0 routines that students may use until they are able to
write their own I/O code. - ‘

Part IV (Chapters 19-20) is entitled “An Introduction to System Software.” As
everyone in computer science is well aware, an in-depth understanding of computer
systems requires a knowledge of both hardware and software and the close relation-
ship of the two. Of course, a thorough treatment of this complex topic is well beyond
the scope of a single course in computer organization, and it will be the subject of a
number of succeeding courses in computer science. In Chapters 19 and 20 we provide
an introduction to some of the most common system software components that stu-
dents have encountered, including scanners, one and two pass assemblers, linkers,
and absolute and relocatable loaders. This material serves as both an introduction to
the general concepts of system software and as motivation for material that will be
presented in future courses, such as operating systems and compiler design. It also
allows us to end the text by summarizing the life cycle of a process on a typical Von
Neumann computer—f{rom translation through linking, loading, and execution using
the fetch/execute instruction cycle described in Part II. This discussion should clar-
ify the close working relationship of hardware and software as well as demonstrate
the steps needed to run computer programs.

There are essentially two different ways to approach a course in computer orga-
nization; this text will easily adapt to either one. The instructor who wishes to con-
centrate more on the general principles of computer organization and somewhat less
on the assembly language of a specific system will want to spend more time on Chap-
ters 1 to 9 and 19 to 20, and less time on the MACRO-11 material in Chapters 10
to 18. Because less time will be available to cover the language, the instructor may
choose to omit some of the more advanced features of MACRO-11 such as condi-
tional assembly, traps, or floating point instructions.

Conversely, the instructor who wants to concentrate more on assembly language
programming may present the material in Chapters 2 through 9 more quickly so
that time is available for a thorough presentation of all the features of MACRO-11.

- This instructor should find Chapters 10 to 18 a complete and self-contained in' ro-
duction to assembly language programming in MACRO-11. This approach will
allow the students to get into assembly language carlier and write more, and 110re
complex, programs. However, we hope that adequate time will still be spent on the
general concepts described in Parts I and II in order to give the student a firm
grounding in the essential principles of computer organization.

I would like to thank a number of people who helped me in the preparation of this

£ PREFACE _

text. The faculty and staff of the Computer Science Department of the Hebrew Uni-
versity of Jerusalem provided me with both office and computer facilities during the -
writing of the original manuscript. Mr. Mark Wickham painstakingly and accurately °;
coded, ran, and tested all of the MACRO-11 examples presented in the book. My
ystudents in the course CS30, “Computer Systems Organization,” at Macalester Col-
Jege were the guinea pigs upon whom I tested the ideas contained in this book. A
most important thank-you goes to Ms. Sandy Whelan, who edited, typed, and revised
the manuscript and whose contribution to the success of this project was invaluable.
Finally, I wish to thank all of the wonderful people with whom I worked at John
Wiley: Carol Beasley, Gene Davenport, Richard Bonacci, Lorraine Mellon, and
Elaine Rauschal. This is the fourth book that I have completed for Wiley; and I have
truly enjoyed every one.

G. Michael Schneider

Minneapolis, Minnesota

Chapfer 1 An Introduction to Computer Systems 1

1.1 Introduction 4
1.2 The Hierarchy of Abstractions 3
1.3 Computer Organization 9

PART ONE
THE REPRESENTATIOJ; OF INFORMATION

Chapter 2 Unsigned Binary Representations 17

2.1 The Binary Numbering System 475

2.2 Shorthand Representations of Binary Numbers: Octal and
Hexadecimal 22

2.3 Summary 27

Chapter 3 Signed Integer Representations 31

3.1 Introduction 31

3.2 Sign/Magnitude Notation 31

3.3 Radix Complementation (Twos Complement) 32

3.4 Arithmetic on Twos-Complement Values 37

3.5 Implementation of a Twos-Complement Adder 40

3.6 Diminished Radix Complementation (Ones Complement) 45:
3.7 Binary Coded Decimal (BCD) 47

3.8 Summary 49 ;

Xl

xil CONTENTS

Chapter 4 Character DataType 55

4.1 Introduction 55
4.2 Character Codes 56
4.3 Summary 63

Chapter 5 Floating-Point Representations and Other Data
Types 65

5.1 Floating-Point Representations 65
5.1.4 Infroduction 65
5.4.2 Scientific Notation 67
5.1.3 Normalization 68
5.1.4 Other Representational issues 74

5.2 Floating-Point Errors 77
5.3 Summary of Floating-Point Representations 78
5.4 Other Data Types 79

PART TWO
THE STRUCTURE OF AN IDEagl.lZED COMPUTER SYSTEM

Chapter 6 Memory 87

6.1 Introduction 87
6.2 The General Structure of Memory 88

6.3 The Implementation of Memory 90
6.3.1 Storage of the Individual Bits 90
6.3.2 Putting the Bits Together 93

6.4 Memory Registers 95

6.5 Overall Memory Organization 99
6.6 Alternative Memory Structures 101

Chapter 7 The Arithmetic /Logic Unit 105

7.4 introduction 105

7.2 The Functional Units 105

7.3 Registers 109

7.4 The Interconnect Network 4111
7.5 Summary 118

Chapter 8 Input/Output and Mass Storage 121

8.1 introductic. 124
8.2 Access Mechanisms 122
8.3 Record Sizes and Blocking Factors 126

T - CONTENTS xill ?

8.4 The Character Orientation of Input /Output 128
8.5 Modes of Transfer 130
8.6 Summary 137

Chapter 9 The Control Unit 141

@.1 Introduction 141

9.2 Instruction Formats 143
9.2.1 Four-Address Format 144
9.2.2 Three-Address Format 145
9.2.3 Two-Address Format 146
9.2.4 One-Address Format 150
9.2.5 Zero-Address Format 163

9.3 The Storage of Instructions 159

9.4 The Components of the Control Unit 161
9.5 The Overall Operation of a Computer 165
9.6 Summary 169

“‘ PART THREE
THE STRUCTURE AND ORGANIZATION OF A COMPUTER
SYSTEM: THE PDP-11 :;;\;AILY OF COMPUTERS

Chapter 10 Introduction to the PDP-11 and MACRO-11
179

40.1 Introduction 179

10.2 The PDP-441 Family 179

10.3 Basic PDP-14 Architecture 181

10.4 Assembly Language Versus Machine Language 185
410.5 Why Learn Assembly Language? 188 :

Chapter 14 Addressing Modes - 193

41.1 Introduction 193
44.2 Addressing Techniques 195
14.2.1 Register Mode (Mode 0) 195
41.2.2 Register Deferred Mode (Mode 1) 196
14.2.3 Autoincrement Mode (Mode 2) 198
11.2.4 immediate Mode (Mode 2, Register 7) 199
11.2.5 Autodecrement Mode (Mode 4) 204
11.2.6 Index'Mode (Mode 6) 203 .
14.2.7 Relative Addressing (Mode 6, Register 7) 206 .

44.3 Summary 241

xiv CONTENTS —

Chapter 12 Some Basic MACRO-11 Commands 217

12.1 Introduction 217
42.2 Data Transfer Operations 218
12.2.1 Move, Move Byte 219
12.2.2 Clear, Clear Byte 220
12.2.3 Complement, Complement Byte 220
42.2.4 Negate, Negate Byte 221

12,3 Arithmetic Instructions 222
12.3.1 Increment, Iincrement Byte 222
12.3.2 Decrement, Decrement Byte 223
12.3.3 Addition 224
12.3.4 Subtraction 2286
12.3.5 Multiplication 226
12.3.6 Division 227

12.4 The .WORD and .BYTE Pseudo-Operations 229
12.5 Examples of MACRO-11 Code = 232

Chapter 13 Compare and Branch Instructions 239

13.4 introduction 239
13.2 The Compare Instructions 239
13.2.1 Test, Test Byte 240
43.2.2 Compare, Compare Byte 240
13.2.3 Direct Sefting and Clearing of the Condition Codes 242

13.3 The Branch Instructions = 242
43.3.1 The Simple Branches 244
13.3.2 Signed Conditional Branches 246
13.3.3 Unsigned Conditional Branches 249
43.3.4 The Jump Instruction 251
13.3.5 The Halt Instruction 252

13.4 Some Additional Pseudo-Opercﬂons 252
‘. 13.4.1 Direct Assignment 252 - ,
43.4.2 The .BLKB and .BLKW Directives * 254
.43.4.3 The .TITLE and .END Direcﬂves 256

43, 5 Example MACRO-41 Programs = 257
413. 6 Running MACRO-11 Programs 260 '

Lhapter 14 Logical and Shm Commandsv 269

14.1 Introduction 269
14.2 Logical Instructions 269
’ 14.2.1 Bit Set, Bit Set Byte 271
14.2.2 Bit Clear, Bit Clear Byte . 272
44.2.3 Bit Test, Bit Test Byte 274

- ore

CONTENTS XV

44,3 Shift Instructions 276
14.3.4 Arithmetic Shifts 276
14.3.2 Logical Shifts 278
14.3.3 Extended Shifts 280
14.4 Example Programs ~ 282 /
14.5 Some Additional Pseudo-Operations 287
14.5.1 The .ASCll and .ASCIiZ Directives 287
14.5.2 The .EVEN Directive 289
44.5.3 Listing and Function Control 290

44,6 Summary 292

Chapter 15 Input/Output in MACRO-14 299

15.1 Introduction 299
15.2 Character-Oriented Input/Output” 300
15.2.1 Input 304 e
15.2.2 Output 306
15.3 Interrupt-Driven Input /Output 310
415.3.1 Interrupt Processing 310
45.3.2 Multibuffering 317

15.4 Block Transfer Devices 321
18.5 Debugging in MACRO-11 325

Chapter 16 Subroutines 333

46.1 Introduction 333
46.2 Stacks© 333
16.3 Subroutine Linkage 337

16.4 Parameters 343 -
16.4.1 Parameter Passing with Global Vorlobles 343 .
16.4.2 Parameter Passing with Registers 344
16.4.3 Parameter Passing with In-Line Code 349
16.4.4 Pararheter Passing with Stacks 352

16.5 Case Study: Two-Dimensional Arrays 356
16.6 Recursion 360
16.7 External Subroutings 363

Chapter 17 Macros and Coriditional Assemibly N

47 .1 Introduction 371 . .
47.2 Macro Processing 373 , -
47.2.1 Macro Definitions 373 - :
17.2.2 Macro Expansions 377
47.2.3 Labels in Macros 382

xvl CONTENTS

47.3 Uses of Macros 386
47.3.1 Elimination of Repetitive Code Segments 386
17.3.2 Extending a Language 388
47.3.3 Simulating an Entire Language 393

17.4 System Macros 394
47.5 Conditional Assembly 396

Chapter 18 Other Topics in MACRO-14 405

18.1 Floating-Point Instructions in MACRO-11 405

18.2 Additional Addressing Modes 412
18.2.1 Autoincrement Deferred Mode (Mode 3) 413
18.2.2 Autodecrement Deferred Mode (Mode §) 414
18.2.3 Index Deferred Mode (Mode 7) 4415
18.2.4 Relative Deferred Mode (Mode 7. Register 7) 4416

18.3 Extended-Precision Arithmetic 418
48.4 Traps 420

18.5 Reentrant Code 425

18.6 Conclusion 429

PART FOUR
AN INTRODUCTION‘I:S)5 SYSTEM SOFTWARE

Chapter 19 The Assembly Process 437

19.1 Introduction 437

19.2 An Assembiler 440
19.2.1 The Scanner 441
49.2.2 Pass One: Building the Symbol Table™ 444
19.2.3 A 'One-and-a-Half-Pass” Assembler 448
19.2.4 Pass Two: Parsing and Code Generation 455

19.3 Conclusion 464

Chapter 20 Linking and Loading 467

20.1 Infroduction 467
20.2 The Loader 467
20.2.4 Absolute Loaders 4741
20.2.2 Relocatable Loaders 473
20.2.3 An Example of the Loading Process 475
20.2.4 Dyngmic Run-Time Loaders 478

20.3 The Linker 480
__ 20.3.1 Exterriat References and Calls 482

20.3.2 The Linking Aigorithm 484

mg O >»

20.4 The Life Cycie of a MACRO-14 Program 488
20.5 Summary 489 ‘

APPENDIXES
495

- Permanent Symbol Table (PST): MACRO-11 Operation

Codes 497

Summary of Address Mode Syntax 503
Permanent Storage Table: MACRO-11 Assembler
Directives 505

Diagnostic Error Message Summary 509
Routines for input /Output 513

Index 517

CONTENTS xvii

"\

AN INTRODUCTION
TO COMPUTER
SYSTEMS

1.4
Introduction

In this text we will be studying the design, structure, and internal organization of
computer systems. In this respect a computer is quite similar to a number of other
large, complex systems, such as an automobile, a guided missile, or a telephone net-
work. It can be studied at many levels of abstraction. People with different back-
grounds and goals will examine a systerh in completely different ways and decompose
it into totally different “building blocks.” v

We can clarify the last point by listing some of the ways that people view one well-

- known and widely used system—the automobile, To the éasual driver, an automobile
is simply a meai$ of transportation. It can be driven fram here to there at a certain
speed, at a cert4in cdst, and with # particular level of convenience. Technical ques-
tions about what is happening under the hood are irrelevant at this level of abstrac-
‘tion; the only things that matter are how to start and stop it and how to drive it.
From the viewpoint of an automobile mechanic, an automobile is a collection of
major subsystems (e.g., engine, transmission, electrical, exhaust) that must function
and interact properly to provide acceptable service. {

The automobile designer is interested in the same collection of subsystems, but is
~ also concerned about how to design them and put them together so that the finished
product will meet the needs and desires of the user. The designer is concerned with
marketplace demands, aesthetic appeal, convenience, reliability, and manufacturing
costs. ;

An automotive engineer is concerned not only with these major functional subsys-
‘tems, but also studies the design of more primitive and basic automotive building
blocks such as valves, cams, gears, gaskets, and seals. The parameters of interest at
 this level may include stress, strain, tolerance, and strength.

1

2 AN INTRODUCTION TO COMPUTER SYSTEMS

Finally, a chemist or metallurgist considers a car at the lowest level of abstrac-
tion—as simply a collection of elements and materials such as iron, stéel, aluminum,
rubber, and glass.

This extended analogy should make you realize that when you study any large
complex system, whether it be an automobile or a computer, the “pieces” you see
and the approach you choose depend entirely on your purposes in studying the sys-
tem, and the questions you wish to answer.

The viewpoint from which you decompose and study a system is called an abstrac-
tion level, and the components you study at that level are typically called the building
blocks or primitives of the abstraction. At any given level of abstraction, the internal
workings of the primitives at that level are hidden from view, and you see these
building blocks only as indivisible entities that perform a given function. Likewise,
any relationships that exist between these inner subcomponents are invisible, and the
building blocks are viewed solely as “black boxes.”

For example, in Figure 1-1a, you would study system S by studying its three com-
ponents, A, B, and C, and the interactions between them, without concern for how
A, B, and C themselves are constructed. If the inner workings of components A, B,
and C weretruly important to an understanding of system S, this level of abstraction
would be inappropriate and you would have to choose a different abstraction level,
such as the one shown in Figure 1-1b on the next page. Now you can view system S
as being composed of components A, B, and C, as well as subcomponents Al, A2,
B1, B2, B3, C1, and their interrelationships. You have gained some additional infor-
mation about the internal construction of system S. However, you may also become
enmeshed in a great deal of low-level-detail that could inhibit your understanding of
the operation of the overall system. Whether Figure 1-1a or 1-1k is the better way
to view system S"depends on what questions you wish to answer and what relation-
ships you want to study. ’

In the next section, we show specifically how this generalized discussion of abstrac-
tion levels applies to the study of computers and computer systems. This allows us

FIGURE I-1a . Abstraction Level 1.

System S

(a)

THE HIERARCHY OF ABSTRACTIONS 3

FIGURE 1-1b Abstraction Level 2.

System S

Al

(b)

to explain in detail the material that is presented in the remainder of the text, and
to explain the viewpoint from which we will be examining computer systems. This
viewpoint will be quite different from the framework you may now be using.

1.2
The Hierarchy of Abstractions

There is no single, uniform way to classify the different ways of studying a computer
system. Similarly, the terminology associated with these differing viewpoints is not
totally standardized. Figure 1-2 presents a quite common and very popular set of
abstractions of a computer system.

The very highest level of abstraction (level 1) is typically called the operating sys-
tems level or, more simply, the systems level. At this level of abstraction, you view a
computer (or possibly a network of computers) as a “black box” that solves problems,
much as the casual driver views a car merely as a means of transportation, without
concern for the technical aspects of automotive engineering. At this level, you simply
ask the computer to execute tasks, such as statistical packages, text processing, or
graphic displays. You communicate with the computer through a high-level com-
mand language, which may be part of a program called the operating system or some
other software system. This program interprets your request and either performs the
desired task or schedules another program to execute it. Your interaction with the
computer system is limited to entering these commands, providing data, and viewing
the results. Typical primitives at this level include:

Log on/log off procedures
Account numbers, passwords, and billing procedures

