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PREFACE

This book is intended to be an elementary introduction to the theory of
solitons, a topic that has provided a fascinating glimpse into the inner
workings of certain nonlinear processes during the past decade. The back-
ground assumed of the reader is within that usually accumulated by a senior
or beginning graduate student in physics or applied mathematics. Some
knowledge of integration in the complex plane is presumed, and prior
exposure to eigenvalue problems, preferably in the context of quantum
theory, will be found helpful but not essential. Since the subject matter is
concerned with the solution of nonlinear partial differential equations, some
familiarity with the rudiments of linear partial differential equations is, of
course, assumed. The applications presuppose some familiarity with hy-
drodynamics, electromagnetic theory, and the quantum theory of a two-level
atom.

The subject is thus presented at an elementary level and concentrates on
the background material and introductory concepts that have played a role in
setting the stage for some of the current research trends in the field. Recent
reformulations involving modern differential geometry and group theory, as
well as the ingenious techniques devised by R. Hirota and the results on
lattice solitons pioneered by M. Toda, have not been included.

The exposition is pedagogic rather than historical and the topics chosen for
consideration are those that, in the author’s opinion, convey the basic ideas of
the subject in the simplest and most direct way. The analytical formulations
are those that present themselves naturally to a physicist raised in an applied
tradition. Such workers usually find the more severe procedures of the pure
mathematician to be less rather than more demonstrative.

After an introductory chapter that gives a brief indication of the connec-
tion between a nonlinear partial differential equation that exhibits soliton
behavior (the Korteweg—deVries equation) and a linear eigenvalue problem
(for the Schrodinger equation), the next two chapters provide an elementary
account of one-dimensional scattering theory and inverse scattering methods.
The Korteweg—deVries equation is then treated by inverse scattering tech-
niques in Chapter 4. Chapter 5 provides a corresponding introduction to the
other most common soliton equations. Chapters 6 and 7 present some
examples of how soliton equations arise in various physical contexts. Chapter

vii



viii PREFACE

8 introduces the subject of Backlund transformations and finally, in Chapter
9, the recently popular topic of soliton perturbation theory is considered.

The presentation is largely self-contained so that reference to the original
literature should be unnecessary. A number of references to additional
background material have been included as well as references to expositions
that either extend or complement the presentation given here. They are not
intended to document either priority or high points in the historical develop-
ment of the subject. The reader interested in extensive bibliographies may
consult the article “The soliton: a new concept in applied science” by A. C.
Scott, F. Y. F. Chu, and D. W. McLaughlin, Proc. IEEE 63, 1443-1483
(1973) as well as the volume Solitons (Springer Topics in Modern Physics
Series) edited by R. K. Bullough and P. J. Caudrey (Springer-Verlag, Heidel-
berg, 1980).

Certain facets of soliton theory may be traced back quite directly to
research in nineteenth-century mathematics. It has been this writer’s experi-
ence that reference to the research of our predecessors can be especially
rewarding when investigating soliton theory. The writings of A. R. Forsyth
have been found to be particularly appropriate in this regard. Some aspects of
soliton theory seem to provide fulfillment to the closing paragraph in the sixth
volume of Forsyth’s Theory of Differential Equations, where he writes:

My desire has been to give a continuous exposition of those portions of the
subject which . . . bear some promise of leading into paths of research that will
be trodden by investigators in days yet to come.

I wish to record my appreciation to F. A. Otter, Jr., for a comment concern-
ing the occurrence in dislocation theory of what is now known as the
sine-Gordon equation. A solution technique used in this work was based
upon Bicklund transformations. The transfer of these results to coherent
optical pulse propagation, where the sine-Gordon equation also arises, led to
my consideration of what are now known as the solitons of coherent optics.

My thanks are due to F. A. E. Pirani for a very careful reading of many
chapters of this work as well as to M. G. Forest and P. R. Schlazer, who have
also read many sections. By their assistance several errors and obscurities
have been eliminated, and the volume has been rendered less imperfect than
it would otherwise have been.

I am also indebted to W. E. Ferguson, Jr., for providing the numerical
solutions of the Korteweg—deVries equation that appear in Chapter 4 and to
M. O. Scully and F. A. Hopf for the numerical results indicated in Figure 7.6.
The computer assistance offered to me by L. A. Appelbaum and R. C. Dillon
during the preparation of the other pulse profile figures is also appreciated.
Finally, I am grateful to my wife, Joan, for many hours spent in typing.

Any corrections or suggestions for improvements with which my readers
may favor me will be greatly appreciated.

G. L. LaMB, JR.

Tuscon, Arizona
July 1980
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CHAPTER 1

Introduction

A remarkable development in our understanding of a certain class of nonlin-
ear partial differential equations known as evolution equations has taken
place in the past decade. The key to our present knowledge of these equations
is the realization that they possess a special type of elementary solution.
These special solutions take the form of localized disturbances, or pulses, that
retain their shape even after interaction among themselves, and thus act
somewhat like particles. This independence among elementary solutions is a
well-known effect in processes governed by linear partial differential equa-
tions where a linear superposition principle applies but was quite unexpected
when first observed in processes governed by nonlinear partial differential
equations. These localized disturbances have come to be known as solitons.

Although the partial differential equations that govern the motion of
solitons are nonlinear, they are closely related to certain linear ordinary
differential equations known as Sturm-Liouville equations. A study of soli-
tons should thus be prefaced by a summary of the relevant topics in
Sturm-Liouville theory. These considerations are developed in Chapters 2
and 3.

Before taking up these preliminaries, however, we shall give a cursory
introduction to certain essential elements of soliton theory in this initial
chapter. First, by asking the right question regarding an ordinary differential
equation of Sturm—-Liouville type, we shall be led to a consideration of one of
the nonlinear partial differential equations that has soliton solutions. The
equation that arises is known as the Korteweg—deVries equation (Korteweg
and deVries, 1895). It occurs in a number of physical problems, mostly in
hydrodynamics. At our present level of understanding, there appears to be no
basis for expecting so fundamental a relationship between a Sturm—Liouville
equation and the Korteweg—deVries equation. Secondly, to underscore the
close relation between solitons and linear ordinary differential equations, a
formula that expresses the interaction between two solitons is constructed by
adapting a technique devised by Bargmann (1949) for obtaining a certain
class of potentials for the Schrodinger equation, which is an example of a
Sturm-Liouville equation. In a somewhat loose manner of speaking, one can
say the the analytical expressions that describe multisoliton interactions are
merely Bargmann potentials. The particle nature of the soliton is evident
when this two-soliton solution is examined. Finally, we shall consider how the
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2 INTRODUCTION

Korteweg—deVries equation arises in a simple example of nonlinear disper-
sive wave propagation.

1.1 A STURM-LIOUVILLE EQUATION

The differential equation

d?y
—5 +[A-U(x)]y=0, a<x<b (1.1.1)

plus boundary conditions imposed at point x=a and b (either or both of
which may be at infinity) is of frequent occurrence in applied mathematics.
Such an equation is a simple example of a Sturm-Liouville equation (Ince,
1926). Equation 1.1.1 has been most thoroughly studied in the context of
quantum theory, where it is known as a Schrodinger equation. This nomen-
clature sometimes persists even in applications of the equation to classical
physics, such as wave propagation in inhomogeneous media.

For a given function U(x), which would be the potential for a problem in
quantum theory, imposition of the boundary conditions can lead to only
certain specific values of the constant A (the eigenvalues A;) for which the
equation will have a nonzero solution [the elgenfunctlon Yi(x)]. The de-
termination of the dependence of the solution y on the parameter A and the
dependence of the eigenvalues A; on the boundary conditions is known as a
Sturm-Liouville problem.

One of the simplest examples of such an eigenvalue problem is obtained by
setting U(x)=0 and imposing the boundary conditions y(a)=y(b)=0. Solu-
tion of the resulting equation »”+Ay =0 subject to the prescribed boundary
conditions shows that the elgenfunctlons are y;(x)=sin[(}; )/2x),j=1,2,3,.
with the eigenvalues A, =[j7/(b— a)l>. As the length of the system b—a
increases, the A, become more closely spaced and in the limit 6 —a—00 we
obtain the continuous range of eigenvalues 0 <A <oo. When the foregoing
equation arises in the study of vibrating systems, each eigenfunction yi(x)
represents the shape of a normal mode of the system. An example would be a
uniform string that is vibrating in free space and confined between fixed ends
located at points x=a and b. Since the eigenvalues A; are related to the
resonant frequencies of vibration of the system, it is customary to refer to
them as a spectrum of eigenvalues. For the case considered here, say that of a
homogeneous string, the entire length of the system takes part in the vibration
of each normal mode. However, it is possible to construct inhomogeneous
systems, the inhomogeneity represented by the function U(x), for which the
vibration is confined to only a portion of the system. The vibration is then
confined by the inhomogeneity rather than by the boundaries. An example
would be a vibrating string that is partly embedded in elastic surroundings.
This system will be discussed at length in Chapter 2.
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In the subsequent development we shall always be concerned with systems
of infinite extent. Hence, any localized solutions will always be due to
inhomogeneities. Such localized solutions have been perhaps most thoroughly
studied in quantum theory, where they are used to describe the discrete
energy levels of atomic systems.

There are relatively few functions U(x) for which the corresponding
ordinary differential equation (1.1.1) may be solved in terms of the standard
transcendental functions. As an example (which will be considered in detail
in Chapter 2) the choice U(x)=—2 sech’x plus the boundary conditions
Y(*00)=0 leads to the single eigenvalue A, = — 1 with the associated eigen-
function y,=sech x. That is, y,=sech x is the solution of the equation
»{ +(—142sech’x)y, =0 that vanishes as x — + oo. In quantum theory, the
interpretation of this result is that a particle is confined by a potential well
having a shape proportional to sech?x while the single value of A is propor-
tional to the energy that the particle confined by this well can possess. As a
classical interpretation of the same equation, we may consider the channeling
of a wave in a medium having the depth-dependent refractive index n2=1+2
sech®x, where depth is measured from the location of the maximum value of
n(x). The inhomogeneity establishes a waveguide in the medium. A wave can
be confined to the depth about which the refractive index takes on its
maximum value. When the sign of the potential is reversed so that U(x)=2
sech’x, the potential is repulsive and no bound state occurs. Similarly, when
the refractive index is given by n?=1—2 sech®x, waves tend to emanate away
from the region of refractive index variation and no channeling effect takes
place. This example will be developed further in Chapter 2.

In addition to the discrete negative values )\j, with their associated localized
wave functions y,(x), equations such as (1.1.1) can also possess a continuous
range of solutions for positive values of A when b — a becomes infinite. In the
quantum case the physical interpretation of such solutions is that of the
scattering of an incident particle with energy proportional to A by some
obstacle that is characterized by the potential U(x). In the one-dimensional
problems being considered here, the presence of the scatterer usually mani-
fests itself in terms of reflection and transmission of the incident wave. [The
fact that certain choices for the potential U(x) can result in perfect transmis-
sion with no reflected wave will play a central role in later considerations.]
Particles with any positive energy may be incident upon the scattering center,
of course, and hence we expect the continuous range of positive eigenvalues
0<A<oo. In the example of the inhomogeneous medium mentioned above,
the situation corresponding to A>0 is the reflection and transmission of a
wave of arbitrarily high frequency that is incident upon the inhomogeneous
layer from the outside. In Chapter 2 we will show that, for the potential
function U(x)= —2 sech?x given above, the scattering solutions are made up
of linear combinations of the functions Y= exiVA *(iVN F tanh x). De-
termination of the solution of a Schrédinger equation when the potential
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function U(x) is specified is frequently referred to as solving a scattering
problem.

1.2 THE KORTEWEG-deVRIES EQUATION

If the function U(x) in (1.1.1) should contain a parameter, say a, so that
U= U(x,a), then variation of the shape of the potential by variation of «
could be expected to lead to some corresponding variation in the eigenvalues
A;; that is, we would expect the values of the A; to depend upon a. It is
perhaps not too unnatural to ask whether or not there are potential functions
U(x,a) for which the A; remain unchanged as the parameter « is varied. One
rather trivial example suggests itself immediately. Replacement of any U(x)
by U(x + «) merely translates the potential or refractive index inhomogeneity
along the x axis. This merely changes the location of the confined particle or
depth of the sound channel and has no effect upon the bound-state energy or
the frequency of the confined wave. Such a variation of a thus has no effect
upon the eigenvalues A;. For comparison with future results, it should be
noted that functions U(x + a) satisfy the linear partial differential equation
U,— U,=0. We shall find that there are other more interesting possibilities
that lead to nonlinear partial differential equations. In particular, functions
U(x,a) that satisfy the nonlinear partial differential equation

u+uu.+U,, =0 (1.2.1)

will also be shown to leave the eigenvalues invariant. When the parameter «
is interpreted as time (the associated Sturm-Liouville equation is, of course,
not the time-dependent Schrodinger equation), then (1.2.1) is the Korte-
weg—deVries equation.

Finding solutions to the Korteweg—deVries equation can thus be related to
the determination of parameter-dependent potentials in a Sturm-—Liouville
equation, and vice versa. The scattering problem mentioned in Section 1.1
was concerned with the determination of a wave function y when the
potential U was specified. In the present situation we are concerned with
determining the potential when certain information about the wave function
is specified (in a manner that will be considered in detail in Chapter 4).
Determination of a potential from information about the wave function is
appropriately referred to as an inverse scattering problem.

By using a method devised by P. Lax (1968), we may see quite easily that
the Korteweg—deVries equation is one of an infinite number of equations that
govern the variation in the potential of a Schrodinger equation in such a way
that the eigenvalues remain constant. To see this, it is convenient to write the
Schrodinger or Sturm-Liouville equation in the form

Ly =N\ (1.2.2)
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where L=D?—u(x,7) and D=d/dx. A time derivative of this equation
yields

(L)’)t Ly,+Ly= >\ty+>\yt (123)

Since (Ly), =y, — w,— uy=Ly,—uy, we see that L,= —u,. We are inter-
ested in imposing a time variation on u and hence y, such that A,=0. Let us
consider the possibility that the time dependence of y may be expressed in the
form y,= By where B is some linear differential operator (not necessarily
unique) that must be determined. The spatial variation of y is, of course,
given by (1.2.2). Equation 1.2.3 may now be written

(—u+[L,B])y=Ay (1.2.4)

where [L,B]=LB— BL. We note that A will be a constant so that A,=0
provided that B is chosen to satisfy the equation —u,+[L,B]=0. In general,
this would be an operator equation. However as we shall presently see,
certain restrictions on the form of B can yield an expression for [L, B] that is
devoid of differential operators and contains merely « and its spatial deriva-
tives. In such cases we shall have constructed a partial differential equation
for u(x,t) which, when satisfied, will imply A, =0; that is, the eigenvalues
remain constant in time.

As a first example of a differential operator B that can lead to constant
eigenvalues, let us consider B,=aD, where a is initially allowed to be a
function of u and its spatial derivatives. Then, from the definition of L,

[L,Bl]y=(LB, — B,L)y

=(D?—u)(ay,) —aD(y..—u,)
=2a,D?y+a,Dy+auy (1.2.5)

If the coefficients of D% and Dy in this last expression vanish, that is, if a is a
constant, then [L, B,]=au, and (1.2.4) becomes

(y,—au)y=—A\y (1.2.6)

Therefore, A, will be zero and A thus constant in time provided that u satisfies
the partial differential equation u, — au, =0. Since the solution of this equa-
tion is any function of x + at, we see that any potential of the form u(x + ar)
will leave A unchanged in time. This somewhat uninteresting example in
which the parameter at merely translates the potential along the x axis at a
velocity — a has already been alluded to in the preceding dlscuss1on

To obtain a more interesting example we might try B,=aD?*+fD+g,
where f and g are, in general, functions of « and its spatial derivatives and a is
again a constant, as in the previous example. However, a simple calculation
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shows that no extension of the previous result is obtained. We are merely led
to the same linear partial differential equation for u.
If we proceed a step further and consider B;=aD?+ fD +g, we find that

[L’BB:Iy = (fo + 3aux)D5/ + (fxx+2gx +3auxx)Dy

+(8ex + AU+ fur)y (1.2.7)

A new partial differential equation for ¥ now results when we again require
that the coefficients of D? and Dy vanish. The vanishing of these coefficients
yields simple differential relations that are readily integrated. We find that

=—2au+c, and g= — 2au, + c,, where ¢, and c, are arbitrary functions of
time that arise from integration. Then from (1.2.7),

[L,B;]y= [%a(uxxx —6uux)+clux]y (1.2.8)

The partial differential equation satisfied by u again follows from the relation
—u,+[L,B,;]=0. The constant a may be set equal to —4 to simplify the
coefficients in the resulting equation. Also, the function c,(#) may be set equal
to zero since it may be eliminated in the final equation for ¥ by merely
transforming to new independent variables given by dx’'=dx+ c¢,(f)dt and
dt’=dt. The new equation for u is thus found to be

u,—6uu, +u,, =0 (1.2.9)

If u is governed by this equation, the left-hand side of (1.2.4) will vanish and
hence we again obtain A,=0. Except for the factor of —6 (which could be
eliminated by setting w= — 4 U) this is the nonlinear partial differential
equation that was given in (1.2.1). It is one of the standard forms of the
Korteweg—deVries equation. Thus, if the potential in a Schrodinger equation
evolves according to the Korteweg—deVries equation, the eigenvalue parame-
ter A remains constant.

Finally, since the functions f and g in the operator B; are now known, the
time dependence of the solution y is also known. It is given by

y,=Byy=(—4D*+6uD+3u,)y (1.2.10)

The function c¢,(#) has also been set equal to zero since it may be eliminated
by introducing a new dependent variable y =y exp (fc,dr). It should be noted
that both the spatial variation of y,

Vix —W=Ny (1.2.11)

and the temporal variation given by (1.2.10) are expressed in terms of linear
differential equations.
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As might be expected at this point, an infinite sequence of higher-order
equations, characterized by the odd linear operators Bs,B,,..., may be
constructed (Lax, 1968; Gardner et al., 1974). However, these higher-order
evolution equations do not seem to arise in physical applications at present
and will not be considered here. Instead, we shall examine two simple
solutions of the Korteweg—deVries equation (1.2.9).

Single-Soliton Solution of the Korteweg—deVries Equation

The simplest solution of the Korteweg—deVries equation is the steady-state
solution which is obtained by looking for a solution in the form u(x —ct). The
solution thus represents a disturbance that moves in the positive x direction
at a constant velocity c. It will be shown in Chapter 4 that a steady-state pulse
solution of the Korteweg—deVries equation (1.2.9) is

u=—§ sechz[%(x—ct)J (1.2.12)
This solution exhibits a common feature of nonlinear waves in that the
amplitude and velocity of the pulse are related. Larger-amplitude pulses move

more rapidly and also are narrower in width. A simple integration shows that
the width and amplitude of the pulse are related in such a way that

f_°° axVu| == (12.13)

The solution given in ( 1.2.12), which represents a localized disturbance that
is symmetric about its midpoint, is the single-soliton solution of the Korte-
weg—deVries equation. However, the true soliton nature of this expression is
not yet evident. The essential element of the soliton is that the analytical form
above is preserved, except for a phase shift, after the interaction of two or
more such pulses. To see this preservation of form upon interaction, we must
consider a more complicated solution than the mere steady-state result
quoted above. Procedures for generating multisoliton solutions based upon
inverse scattering techniques will be described in later chapters. To give a
preview of these more general results, we shall here obtain the two-soliton
solution by a simple method that predates the more sophisticated inverse
scattering techniques. The method is one devised by Bargmann (1949) for
application to the radial Schrodinger equation but which may be applied
equally well in the present instance where the range of the independent
variable is the entire x axis. The close connection between potentials and
multisoliton solutions is brought out quite clearly and simply by this method.



