UML Y ifii 1) %f 8¢ i 5% B A 13

kg sire pem
SUMLM

OBJECTS,COMPONENTS,

AND FRAMEWORKS
wiTH UML
THE CATALYSIS APPROACH

DESMOND FRANCIS D'SOUZA . .
ALAN CAMERON WILLS g

TI :
B JACOBSON
A RUMBAUGH

&é&é&/f&&

www.sciencep.com

UML 5] 3 R it e A4

MR A ERS UML

Desmond Francis D’souza
Alan Cameron Wills

M4 5 % B R
it =

pll

" & @& 7o

A A G SR AT R 0 % HEALRT UML K BEL R 2 TALEF IR P R EEOF S I RGN
JH. A3t 16 ALK, bR X RARE, xR Al el Catalysis N H]AEFLANES)
AMHN AR, i HARF#E, ARsATR ToE 2.

ABIE S R BOE NG .

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: Objects, Components, and Frameworks With UML: The Catalysis
Approach,1* Edition by Desmond Francis D*Souza and Alan Cameron Wills, Copyright©1999

ISBN 0-201-31012-0

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
IR T NRIEFNE BTN CANVELG o s I DR AT B R [65 v) 8985 AT .

AP E} G AT Pearson Education(55 /] 807 HMRHE U BOGC T Db %5 . Jobn s & ANt .
&7 01-2003-2543

E B £ ki 4 B (C1P) SR

% A HESEH UML W H=Objects Components, and Frameworks with UML/ () #57%
(Souza,D.F.) () MUKW (Wills,A.C.) & —52lpAL —bat: BREARAE, 2003

ISBN 7-03-011408-6

I.oxb. MO @D @ @A bR %385, UML— R F R ik —3%
IV.TP312

I RRCAS P 0 CIP dii A% - (2003) 5% 030811)

RR 4 BRSL/TIERE: BRI
FrEfP#l: AR/ @A A ARF@RitE
A4 45 2 kB IR
ALt s R AL 16 %
WR 43 615:100717
http:// www.sciencep.com

24 % & 5 ER
FRPAIRGAERT S IEL R
*
2003 4ES A — R JFA: 787X960 1/16
2003 4F 5 HES—KEDK] Epgk: 50 3/4
EN%: 1—2 000 7¥: 972000
Efr:80.00 5T

CINFENFRE RS, T AFTREEAE)

ZEIRIE

it 25 A ML {4 B) AR 4L o A A RS TR, W VS R AE AN B K. 42
SBR[Rt ke B, BROROBR AT % . R A AR B AL AR R A BOR B 2 A
PE K. 20 40 60 AR AR AEALEE ATV RE ARSI B TR 7 i A VR I
MLEEYE . FRAMIT AT 60 A0 TR A F 09 F TR O &, S 3EF) 70
FERGEAITL R AT 7 80 AEARRI I SR SE R IF A 2 . BB i 1w % R & i

THT 1) X 52 B KR T K 7 i R AE S5 R AL T A TE R AN S A SR OF & Ju B B Bl | e
mskAy, e, B, 4R, HEFE AL HARMEBAENLE], R A b
Ol 4 B) U AU SRR, R F M T RHEHL. X R AR KT
B BHE T, VUG I A 0 R R B A fi, TR 1 11) RPG A S pr AR T T

20 22 80 4FEAXAR 90 40K, Hofm Bl T LHRm X R bt ik, Hd,
Booch, Coad/Yourdon . OMT Al Jacobson %5 7 2453 1 I) X S840 & B8 1z AT
BT RV 2) RS R B A AR], BMERE AR, & AHER B RRT:
A i 90 AR ERIRZ B FE . ATZEEARBIAE F) 2B 2
Gy al @, A HAE G MR8, 2 (a5 S TR S AR s IEE &Ry
BRI MARKNES, ARTH LR SUME. EXRMERT, S—8EEE
(UML) F 90 A=Az M A

UML #7= A B AT AL X 209 %8 %% G. Booch, J. Rumbaugh Fl 1.
Jacobson il S GAE . AT P 5 il 7oK AT R A, ff UML MM
MFTRBAEAAE EMT 1 DR TR i, 3¢ HARME 7 VP P AHE & ot — 1 e
FIFLE . UML AR/ & A RGEEIRI AR S AL T AL R M &, il AR R i R 2
EIHE I —BURBIRIRAS . 1997 45 11 JT UML # OMG 1 411E SR8 bR A B E
. FERERS) LA P b & R Sk S5 R EERE 5 E PRAR

UML e AE e OO WA 7R T DUFE & Fp oG T 1 1) X 8 Ry
FAEE LA FC AR By 2 SCHU A, LA R BRI AA had F2 46 5, ek anfa
1z X SR BRI T A& . UML W LL—Fh R 0E 5 RSB, LS S22PRy—Lt
BOARNE S A HAE TR S A R CR AT V20, RS A6 16 A ik 5% 1 4
& LA I 25 Rl 7 vk o L LAY

M UML R IARRATT b, 23] 7L A ER, OMG 59 K48 F R Fl
H S HRATEHE b T SEPR EA TOARAER AL, (e dA BOREZ AP S8z

i . . AERS UML A

i FHATU AN 2 R i R AR, A PRGS B RS . il SRR i AR
% WRERG . RGO, TIUEAYHS H TR TR TR S AREE
Bt A BR A 5TL. ELE B T AU R it pLe s, ol FAERIE RS, filansd
e V45 0 0 1 N A 30 A SR VA A RS ke S B

£ UML B R AL A, BB IE T fii— WA s pa s . B &
i 9 UML2.0 JRASKF X UML 9 X — K E K ek, ki) UML 10 &1 5 5L |
A HATIE . KR IE SR E, AR A TR AR A T S

A NF S T 5 1 XS AR A UML A 5609 12 A5, S 1 i) S48 R o i
KRS K UML BH e shas . b o ROk i [a) 6 G2 i B o 5 SR A 3X
BEILAS . (R RG50S) FEIHE T HimX R A RAM S . BT,
IRASTEE . sV . BAREC LA B {4 Z2 4854 S50 JLAF SH T 1) %o R B AR 43 v) B
WHIRS ik (O UML i 7 G R) E A0 T w5 R TR B, 4
BB e BB U R R SR s (R AR) A T e B
TR P L B R A SR s (UML) % i KL ml) DA 8 4% B A TR 1)
Ao 5 B IR A A

¥ B UML FE4%55E S 132 A XA LAS : (UML 2R 2400 %) 1He T BH 752
IF RGE I A BT 2N UML #1780 B A, (O UML M2 Web N FHRERF) 1HE Tiz
JH UML #£47 Web I IR E R HR 5 CHmIXT R 2 40mit. AR M
5 T H) A48 7K UML I F 1) X G2 I sk B o S 48 1 e 5 T H . (4
WE . HEZLS UML R) 118 T aifariz FH UML X1) %5 42 A9 8 R——H {2h-HE 2845
ARHFY J7155ms . (UML 45 Visual Basic W HFEFIFE) FE11E T M UML HERIF|
Visual Basic F2 /7 i) a5 5 1

AT R RMFEE AR A RAS . (COM @ET0E) M (ATL HRNE) |, &
ARV T 1 [%5 G R AR BT H R——COM Fll ATL F5 AR A fl FE 15 S5 ARy BE

B —4 (Executable UML £ RNHE) , X ARBAG T Al Hif7 UML AR & 5 H
FREOR , 1S BER B SiE S AL LA SRS 4 A shAE s b T R, AR E R F &
1) —RIBr A=

B2, XEBITW R NEE T X d R 0 e FEE R A vk SR, TR
It X AR SR B A ST R | B ER R AR TIR AN, HUNEC S K
I T RO, ATLABE, —AHRIRE

AET I, FRO S AR R e E X B, RS RE , 25 FfF5Y.,

FmRFHIME Fok HE

Preface

Businesses, and the worlds in which they operate, are always changing. Nearly all
businesses use software to support the work they do, and many of them have
software embedded in the products they make. Our software systems must meet
those business needs, work properly, be effectively developed by teams, and be
flexible to change.

First Requirement of Software: Integrity

The first two points are old news; since 1968, the software community has been
inventing methods to help understand and meet the business requirements. The
average piece of desktop software may work properly in some average sense; per-
haps the occasional bug is better than waiting until developers get it perfect. On
the other hand, these days so much more software is embedded—in everything
from vehicle brakes, aircraft, and smart cards to toasters and dental fillings.!
Sometimes we should care deeply about the integrity of that software. The tech-
niques described in this book will help you get the requirements right and imple-
ment them properly.

Second Requirement of Software:
Team Development

To enable development by distributed teams, work units must be separated and
partitioned with clear dependencies, architectural conventions and rules must be
explicit, and interfaces must be specified unambiguously. Components will get
assembled by persons different from the developers, potentially long after they
are built; the relationships between the implementations, interface specifications,
and eventual user requirements must be testable in a systematic way.

1. Teeth have historically been a central part of a user’s interface.

xii

PREFACE

This book’s techniques will help you build work packages and components
with these properties.

Third Requirement of Software: Flexibility

To stay competitive, businesses must continually provide new products and ser-
vices; thus, business operations must change in concert. Banks, for example, often
introduce new deals to lure customers away from the competition; today, they
offer more new services via the phone and the Internet than through branch
offices. Flexible software, which changes with the business, is essential to compet-
itiveness.

Flexibility means the ability not only to change quickly but also to provide sev-
eral variants at the same time. A bank may deploy the same basic business system
globally but needs to be able to adapt it to many localized rules and practices. A
software product vendor cannot impose the same solution on every customer nor
develop a solution from scratch each time. Instead, software developers prefer to
have a configurable family of products.

This book’s techniques will help you partition and decouple software parts in a
systematic way.

Flexible Software

The key to making a large variety of software products in a short time is to make
one piece of development effort serve for many products. Reuse does not mean
that you can cut-and-paste code: The proliferation that results, with countless
local edits, rapidly becomes an expensive maintenance nightmare.

The more effective strategy is to make generic designs that are built to be used
in a variety of software products. Such reusable assets include code as well as
models, design patterns, specifications, and even project plans.

The following are two key rules for building a repertoire of reusable parts.

* They should not be modified by the designers who use them. You want only
one version of each part to maintain; it must be adaptable enough to meet
many needs, perhaps with customization but without modification.

* They should form a coherent kit. Building things with a favorite construction
toy, such as Legos, is much easier and faster than gluing together disparate
junk you found in the back of the garage. The latter may be parts, but they
weren’t designed to fit together.

Preface

Xiii

Reusable parts that can be adapted, but not modified, are called components;
they range from compiled code without program source to parts of models and
designs.

Families of Products from Kits of Components

Hardware designers have been building with standardized components for years.
You don’t design one new automobile; rather, you design a family of them. Varia-
tions are made by combining a basic set of components into different configura-
tions. Only a few components are made specifically for one product. Some are
made for the family of products, others are shared with previous families, and
still others are made by third parties and shared with other makes of cars.

We can do the same thing with software, but we need technologies for building
them, and assembling them, into products as well as methods for designing them.

Component Technology

For a component to be generic, you must provide ways that your clients’ design-
ers can specialize it to their needs. The techniques include parameters passed
when a function is called; tables read by the component; configuration or deploy-
ment options on the component; plug-points—a place where the component can be
plugged into a variety of other components; and frameworks, such as a workflow
system, into which a variety of components can be plugged.

Object-oriented (OO) programming underscores the importance of pluggabil-
ity, or polymorphism: the art and technology of making one piece of software that
can be coupled with many others. People have always divided programs into
modules; but the original reasons were meant to divide work across a team and to
reduce recompilation. With pluggable software, the idea is that you can combine
components in different ways to make different software products—in the same
way that hardware designers can make many products from a kit of chips and
boards—and can do so with a range of delayed binding times (see Figure P.1).

Figure P.1 Component-based assembly, any binding time.

Xiv

PREFACE

The other great idea reemphasized in OO programming is the separation of
concerns. The idea is that each object or component, or reusable part, should have
one responsibility and that its design should be as decoupled (independent) as
possible from designs and even the existence of other components.

Both these ideas work whether or not you use an OO programming language
and whether you are talking about objects in programming, large distributed sys-
tems, or departments in a business.

Where Do We See Components?

On a small scale, pluggable user-interface widgets form components. Several such
kits come with visual builders, such as Visual Basic, which help you plug the
components together. Kits also may extend to small parts outside the user inter-
face domain (for example, VisualAge and JavaBeans). These components all work
within one executable program.

On a larger scale, self-contained application programs can be driven by each
other; object linking and embedding/Component Object Model (OLE/COM),
UNIX pipes and signals, and Apple events allow this to happen. Communicating
components can be written in different languages, and each can execute in its own
space.

On a still larger scale, components can be distributed between different ma-
chines. Distributed COM (DCOM) and Common Object Request Broker Architec-
ture (CORBA) are the latest technologies; various layers underneath them, such as
TCP/IP, provide for more primitive connections. When you deploy components
on this scale, you must worry about new kinds of distributed failures and about
economies of object location. Workflow, replication, and client-server, or n-tier
architectures, provide frameworks into which this scale of component can fit.
Again, there are tools and specialized languages that can be used to build such
systems. Enterprise JavaBeans and COM+ are newer technologies that relieve the
component developer of many of the worries of working with large-grained
server-side shared components.

A component, on the larger scale, often supports a particular business role
played by an individual or department with responsibility for a particular func-
tion. Businesses talk increasingly of open federated architectures, in which the
structure of distributed components mirrors the organizational structure of the
business. When reorganizing a business, we need to be able to rewire software in
the same way.

Challenges of Component-Based Development

The technology of component-based systems is becoming fairly well established;
not so the methods to develop them. To be successful, serious enterprise-level
development needs clear, repeatable procedures and techniques for development,

Preface

XV

well-defined and standard architectures, and unambiguous notations whereby
colleagues can communicate about their designs.

A key technique for building a kit of components is that you must define the
interfaces between the components very clearly. This brings us back to integrity. If
we are to plug together parts from different designers who don’t know one
another, we must be very clear about what the contract across the connection is:
what each party should provide to and expect of the other.

In component technologies, such as COM, CORBA, and JavaBeans, the empha-
sis is on defining interfaces. (The idea has a long history, however, stretching back
to experimental languages such as CLU in the 1970s.) The same thing is true no
matter what the technology: UNIX pipes, workflow, RPC, common access to a
database, and the like. Whenever a part can fit into many others, you must define
how the connection works and what is expected of the components that can be
plugged in.

In Java or CORBA, though, interface means a list of function calls. This defini-
tion is inadequate for good design on two counts. First, to couple enterprise-scale
components, we need to talk in bigger terms: A connection might be a file transfer
or a database transaction involving a complex dialog. So we need a design nota-
tion that doesn’t always have to get down to the individual function calls; and it
should be able to talk about the messages that come out of a component as well as
those that go in. JavaBeans (and Enterprise JavaBeans) go some of the way in this
direction. In Catalysis, we talk about connectors to distinguish higher-level inter-
faces from basic function calls.

Second, function calls that are described only by their parameter signatures do
not tell enough about the expected behavior. Programming languages do not pro-
vide this facility because they are not intended to represent designs; but we need
to write precise interface descriptions. The need for precision is especially acute
because each component may interface with unknown others. In the days of mod-
ular programming, designers of coupled modules could resolve questions around
the coffee machine; in a component-based design, the components may have been
put together by two people and assembled independently by a third.

To develop a coherent kit of components, we must begin by defining a common
set of connectors and common models of what the components talk to one
another about. In a bank, for example, there is no hope of making the components
reconfigurable unless all of them use the same definition of basic concepts such as
customer, account, and money (at their connectors, if not internally).

Once a common set of interfaces and a common architectural framework are
laid down, many designers can contribute components to the kit. Products can
then be assembled from the components (see Figure P.2).

xvi PREFACE

1
| — Software Product
ftware Product
Software Produci 7 |
Software Product ’ :
(N 7 v / / I
\ N s \ N ’ |
Software Product \ L \ % P :
T =~ \ N4 \ N / |
\ X S 7\ | 4
\ % ~_ s Q2 \ JON \
/N \
uses'| AN ‘) PN L.k " |
\ e \ |
\ R | Component . |
\ s N S \ R |
\ ’ \ / v
\ 7 ix, / | IR & .
/ omponen
= | LN , Component N P
Component | N \ . ’
! —_—j /
X Component ! = ,’
\ — / Component ’
\ / I /
\ / ! / 2
- L4 I 7
) %) / !
Component kit architecture] ! k/’ Y
&
Common connector standards p 4
Common representations L
Common infrastructure services L

Figure P.2 Products can be assembled from components supplied
by many sources.

What Does Catalysis Provide?

If this component-based scenario seems far-fetched, recall the fate of Babbage’s
Analytical Engine. He couldn’t make it work because it had so many parts and
they didn’t have the machining techniques to make the parts fit together well
enough. Today’s machining has enabled working versions to be made. As our
software industry improves its skills and consistency in making matching parts,
we will also make products from components.

This book gathers together some of the techniques we see as necessary for that
movement into a coherent kit. To make component-based development work, we
need our best skills as software designers, and we need to reorganize the ways in
which software is produced.

The techniques and method in Catalysis provide the following;:

¢ For component-based development: How to precisely define interfaces indepen-
dent of implementation, how to construct the component kit architecture and
the component connectors, and how to ensure that a component conforms to
the connectors.

Preface

Xvii

e For high-integrity design: Precise abstract specifications and unambiguous trace-
ability from business goals to program code.

e For object-oriented design: Clear, use case driven techniques for transforming
from a business model to OO code, with an interface-centric approach and high
quality assurance.

e For reengineering: Techniques for understanding existing software and design-
ing new software from it.

Catalysis and Standards

Catalysis uses notation based on the industry standard Unified Modeling Lan-
guage (UML) now standardized by the Object Modeling Group (OMG). Both
authors have been involved in the OMG standards submissions for object model-
ing; Desmond’s company helped define and cosubmit UML 1.0 and 1.1.

Catalysis has been central to the component-specification standards defined by
Texas Instruments and Microsoft, the CBD-96 standards from TI/Sterling, and
services and products from Platinum Technology; it has been adopted by several
companies as their standard approach for UML-based development. It fits the
needs of Java, JavaBeans, COM+, and CORBA development and supports the
approach of RM-ODP. It also supports systematic development based on use
cases.

Where Does Catalysis Come From?

Catalysis is based on, and has helped shape, standards in the object modeling
world. It is the result of the authors’ work in development, consulting, and train-
ing and is based on experience with clients from finance, telecommunications,
aerospace, GIS, government, and many other fields.

Many ideas in Catalysis are borrowed from elsewhere. The Bibliography sec-
tion lists many of the specific references. We can identify and gratefully acknowl-
edge general sources of the principal features of Catalysis.

* We began applying rigorous methods to object analysis with OMT [Rumbaugh 91].
Integrating snapshots, transactions, state models, treating system operations
and analysis models separately from design classes, and the basic ideas of
refinement of time granularity date from Desmond’s work at this time.

* The rigorous aspects (specifications, refinement, and the influence of VDM and
Z) were seen particularly in some previous OO development methods: Fusion
[Coleman93], Syntropy [Cook 94], and Bon [Meyer88]. Our interest in applying
rigorous methods, such as VDM and Z to objects goes back to Alan’s Ph.D. the-
sis [Wills91].

¢ Collaborations as first-class design units were first introduced in Helm, Hol-
land, and Gangopadhyay’s “contracts” and developed in Trygve Reenskaug’s
[Reenskaug95] method and tool OORAM.

xviii PREFACE

e Abstract joint actions come from Disco [Kurki-Suonio90], the OB] tradition
[Goguen90], and database transactions as well as from the general notion of the
Objectory use case.

» Component connectors have been mentioned in a variety of patterns in recent
years. They date back to Wong's Plug and Play Programming work [Wong90],
previous work (mostly in the Smalltalk arena) on code frameworks, and archi-
tecture work on components and connectors [Shaw96b].

* Process patterns are a corruption of work by several of the contributors to the
Pattern Languages of Programming conferences.

During the development of Catalysis, we have also had a great deal of input
and feedback from many clients and fellow consultants, teachers, and researchers
(see Thank You section of this Preface).

How to Read This Book

Don’t read it all in one night. If you think this is a bit long for a Preface, wait until
you see the rest of the book. What background will you need? Some basic knowl-
edge of UML, OMT, Booch, or Fusion modeling will help; the succinct UML sum-
mary by Martin Fowler is quite readable [Fowler98]. If you already know UML,
take an early look at the UML perspective in the Appendixes.

Begin with Chapter 1—a tour that leads you through the essence of a design
job. Along the way it bumps into all the main Catalysis techniques and ends with
a summary of our approach and its benefits. Then read the introduction to each
subsequent part (I-V) to get a feel for the book’s structure. Most of the subsequent
chapters are designed so that you can read the first sections and the summary at
the end and then skip to the next chapter. After you've gone through the book this
way, go back and dig down into the interesting stuff.

There are places in the book where we discuss some of the darker corners of
modeling, and it’s safe to skip these sections. We have marked most of these sec- A
tions with this icon. There are also places where we illustrate implementations

using Java; if this is new to you, you can usually skip these bits as well.

Chapters 2, 3, and 4 are groundwork: They tell you how to make behavioral
models and what they mean and don’t mean. Chapter 5 is essential: how to docu-
ment a design. Chapter 6, Abstraction, Refinement, and Testing, is about how to
construct a precise relationship between a business model and the program code.
Ché pters 7 through 9 (Using Packages, Composing Models and Specifications,
and Model Frameworks and Template Packages) deal with breaking models into
reusable parts and composing them into specifications and designs. Chapters 10,
11, and 12 (Comp'¢fierts and Connectors, Reuse and Pluggable Design: Frame-
works in Code, and - rchitecture) are about building enterprise-scale software
from reusable compo:. nts. Chapters 13 through 16 are about the process of

Preface

Xix

applying Catalysis, exploring a case study in considerable detail. Depending on
your role, here are some suggested routes.

e Analysts: Mainstream OO analysis is difficult if you are used to structured
methods. In some ways our approach is simpler: You explore system-level scenar-
ios, describe the system operations, capture terms you use in a static model of the
system, and then formalize operations using this model. In other ways, our
approach is more difficult; we do not like fuzzy and ambiguous analysis docu-
ments, so some of the precision we recommend may be a bit unfamiliar for early
requirements’ activities. Read Chapters 1 through 7, 9, and 13 through 15.

e Designers: Object-oriented design is as novel as OO analysis. Again, in some ways
our approach is simpler. You start with a much clearer description of the required
behaviors, and there is a default path to basic OO design that you can follow (see
Pattern 16.8, Basic Design). For doing component-based design, you will use the
techniques of an analyst, except at the level of your design components.

If you are already an OO designer, be prepared for a different focus. First, you
understand the behavior of a large-grained object (system, component) as a single
entity. Then you build an implementation-independent model of its state, and
then design its internal parts and the way they interact. You strictly distinguish
type/interface from class and always write an implementation class against other
interfaces. Read Chapters 1 through 6 (omit sections that go into specification
details), 7, 9, 10 through 12, and 16.

* Implementors: OO implementation should become easier when the task of satis-
fying functional requirements has been moved into the design phase. Implemen-
tation decisions can then concentrate on exploiting the features of a chosen
configuration and language needed to realize all the remaining requirements.

o Testers: Testing is about trying to show that an implementation does not meet
its specification by running test data and observing responses. Specifications
describe things that range from what a function call should do to which user tasks
the system must support; the way to derive tests varies accordingly. Read Chap-
ters 1 through 6. Also, read about QA (see Section 13.1, Model, Design, Imple-
ment, and Test—Recursively; and Section 13.2, General Notes on the Process), and
insist that it be followed well before testing.

® Project managers: Consider your goals for using components or objects carefully
and the justifications for building flexible and pluggable parts (Chapter 10).
Watch out for the project risks, often centered on requirements and infrastructure
(Chapter 13). Together with the architect, design and follow the evolution of the
package structure (Chapter 7) and how it gets populated; if there issucha th gas
development architecture, that is it. Recognize the importance of a precise vocab-
ulary shared by the team (Chapters 2 and 3). Read Chapters 1 thiough 5, and
(optionally) Chapters 6, 7, 12, and 13. Consider startmg 5 th “Catalysis lite”
(www.catalysis.org).

ad™

XX

PREFACE

e Tool builders: Catalysis opens new opportunities for automated tool support in
modeling, consistency checking, traceability, pattern-based reuse, and project
management. Read the book.

 Methods and process specialists: Some of what we say is new; the parts fit toget-
her, and the core is small, so look closely. Read the book.

e Students and teachers: There is material in this book for several semester-long
courses and several research projects, and perhaps even for course-specific books.
Few courses are based on a rigorous model-based approach to software engineer-
ing. We have successfully used the material in this book in several one-week
courses and workshops and know of several universities that are adopting it. If
you want to use some of the illustrations in this book in your presentations, you
need to have permission. Please contact Addison Wesley Longman, Inc. at the
address listed on the copyright page.

® Others: The activities and techniques in this book apply to both large and small
projects, with different emphases and explicit deliverables, and to business mod-
eling, bidding on software projects, out-tasking, and straightforward software
development, even though the rigor in our current description might intimidate
some. See www.catlysis.org.

Where to Find More

When you've finished the book and are eager for more, there is a Catalysis Web
site—www. catalysis.org—that will provide additional information and shared
resources, potentially including the following:

* Example models, specification, documentation, and frameworks

* Discussion of problems this book has not yet fully addressed: concurrency, dis-
tribution, business process models, and so on

* Web-based discussion forums and mailing lists for users, teachers, consultants,
researchers, tire-kickers, and lost souls to share experiences and resources

* Free as well as commercial tools that support the Catalysis development and
modeling techniques

* On-line versions of the book and development process patterns
* Modeling exercises and solutions for university use

* Resources to help others use and promote Catalysis, including short presenta-
tions to educate fellow modelers, designers, and managers; summary white
papers that can be handed out on Catalysis; and so on.

In addition, there are Web sites for each author’s company. Each contains a
great deal of interesting material, which will continue to be updated:

Preface

XX1

e http://www.iconcomp.com/ catalysis—ICON Computing, a Platinum Tech-
nology company (www.platinum.com)
e http://www.trireme.com/ catalysis—TriReme International Limited

Thank You

Thanks to our editors—Mike Hendrickson and Debbie Lafferty—for their
patience and encouragement; and to our production coordinator, Marilyn Rash,
and her team—Betsy Hardinger, copyeditor; Maine Proofreading Services; and
Publisher’s Design and Production Services for expert, speedy art rendering and
typesetting.

Our book reviewers bravely hacked through initial drafts and greatly helped
improve this book. To Joseph Kiniry (a heroic last-ditch effort), Doug Lea, Jennie
Beckley, Ted Velkoff, Jay Dunning, and Gerard Meszaros—many thanks.

Several others provided comments and ideas: John McGehee, Stuart Kent,
Mike Mills, Richard Mitchell, Keith Short, Bill Gibson, Richard Veryard, Ian
Maung, Dale Campbell, Carol Kasmiski, Markus Roésch, Larry Wall, Petter Graff,
and John Dodd. Aamod Sane and Kevin Shank helped sort out issues with nested
packages. We would also like to thank, for useful technical discussions and sup-
port: Balbir Barn, Grady Booch, John Cameron, John Cheesman, Steve Cook, John
Daniels, Chris Dollin, John Fitzgerald, lan Graham, Brian Henderson-Sellars,
Benedict Heal, John Hogg, Trevor Hopkins, Iain Houston, Cliff Jones, Kevin Lano,
Doug Lea, Clive Mabey, Tobias Nipkow, David Redmond-Pyle, Howard Ricketts,
John Robinson, Jim Rumbaugh, Susan Stepney, Charles Weir, Anthony Wil-
loughby, and Jim Woods.

We are very grateful to many others for their feedback and suggestions. For
their encouragement and support, thanks to Clive Menhinick at TriReme and the
team at ICON; and, from Desmond, a very special thanks to Mama, Tootsie and
Clifford, and to Tina’s parents. Alan would like to thank his remaining friends.

Should these good folks deny any responsibility for the final product, we will
gladly take the blame for all inconsistencies and omissions; we know there are
some lurking in these pages, and hope you find this work useful despite them.

Desmond Francis D'Souza Alan Cameron Wills

Objects, Components,
and Frameworks

with UML

The Catalysis™ Approach

