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PREFACE '

This book is both very modest and very ambitious. The extent of its subject
is modest. It is not a complete book of quantum physics. It treats only the
mathematical language of quantum mechanics, the theoretical structure, and
that only from the matrix point of view. Other books and sources have to be
used along with it to get a full account of either quantum mechanics
including wave mechanics or the experiments that reveal the phenomena
quantum mechanics describes.

The book is ambitious in making basic quantum mechanics accessible
with minimum mathematics. It avoids the mathematics of Hilbert space,
Hermitian and unitary matrices, eigenvalues and eigenvectors, and the like.
There arg no state vectors or wave functions at alk. There are no differential
equations. The book does not even-use calculus or {rigonometry. It assumes
only basic algebra.

The emphasis is on the matrices representing physical quantities. States
are described simply by mean values of physical quantities or equivalently
by probabilities for different possible values. This requires using the algebra
of matrices and complex numbers together with probabilities and mean
values. These bits of mathematics are introduced at the beginning and then
used over and over.

1 was surprised to find how much can be done this way, with one hand
tied. It is not only possible; for many things it is easier or better. For
example, calculating correlations of two spins is easier without state vectors.
The absence of a continuous range of possible values for angular momen-
tum or oscillator energy comes out more clearly than in standard methods.

Much of this is original. I found new ways to do things. I hope these will
be interesting to anyone who teaches quantum mechanics at any level. I use
some of them in my graduate course.

This approach reveals the essential simplicity of quantum mechanics by
focusing on the bare skeleton and working only with the key elements of the
mathematical structure.
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" viii  PREFACE

The book grew out of a course I teach for college students not majoring
in physics. 1 also use it in a summer program for gifted high-school students.
It can be used in different ways by people in various situations. For anyone
studying quantum mechanics, it offers an alternative point of view that I
hope will be refreshing. It is designed to give the simplest presentatioit of
the basic topics it covers. I think most people who read Scientific American
can read this book. It can be read along with broader and more descriptive
accounts to learn about the new concepts of the physical world at the basis
of quantum mechanics. They are interesting to people outside physics but .
they are not well known and understood because a complete course in
quantum mechanics requires sophisticated mathematics. This book offers an
opportunity to actually learn some quantum mechanics, do some problems,
and use part of the quantum language, without extensive mathematical
preparation. The algebra of complex numbers and matrices is fairly simple
and rather fun. The book contains over 100 problems. It also contains
references to broader descriptive material.

Presenting quantum mechanics entirely in terms of matrices is not a new
idea. Matrix mechanics existed more than half a year before wave mechan-
ics. Born wrote a book on quantum mechanics from the point: of view of
mairix mechanics alone. It was demolished in a réview by Pauli. No single
method is sufficient for physicists. They should learn all the different ways
of doing quantum mechanics.

Here is one easy way to look rather deeply into quantum mechanics.

THOMAS F. JORDAN

Duluth, Minnesota
June 1985 '
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SUMMARY

v
Quantum mechanics is a fundamental language of physics. It is used to
describe things on a small scale of siz¢ where quantities comparable to
Planck’s constant are important. It represenis knowledge gained from many
experiments that reveal properties of atoms and atomic particles that are
different from what we know in everyday life. Therefore the language is
different. ‘

It is a mathematical language. Its character is determined largely by the
mathematics that is used. Imaginary and complex numbers are widely used.
Physical quantities such as position coordinates, velocities, momenta, angu-
lar momenta, and energies are represented by matrices. The algebra of
matrices is different from that of numbers because matrices do not generally
commute; the product AB of two matrices A and B may be different from
BA.

A quantity may have-a definite value for a particular state of the physical
system or object being described, but for any state there are quantities thas
do not have definite values. For example, if a position coordinate has a
definite value, the momentum in the same direction does not. If a quantity
does not have a definite value for a particular state, there are probabilities
for finding different possible values, and there is a mean value correspond-
ing to these probabilities. Every quantity has a mean value for each state.
The basic rules of quantum mechanics can be stated very simply in terms of
these mean values and the matrices that represent physical quantiti4s. They
are mostly rules that are natural to follow in using probabilities. Yet we can
calculate quite a bit from them without assuming much more.

The simplest example is a spin and magnetic moment described by Pauli
matrices. From the multiplication rules for these matrices, and the basic
rules of quantum mechanics, we deduce that there are only two possible

" values p and —p for the projection of the magnetic moment in a given

direction. We also deduce that if a projection in one direction has a definite

.
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2 QUANTUM MECHANICS IN SIMPLE MATRIX FORM

vatue, a projection in another direction does not; fdr a projection in a
perpendicular direction, there are equal probabilities } for the two possible
values. A definite value for a projection in one direction is all we can know.
I1 is all that can be measured. From it we can calculate mean values and
probabilities for the projections in other directions.

This example is particularly simple because it involves only 2 X 2
matrices. We study it thoroughly Before we consider systems described by

. bigger matrices. We determine which matrices represent physical quantities
related to the spin and magnetic moment, which represent real quantities,
and which non-negative real quantities. We investigate their possible values,
mean values, and probabilities. We find which real quantities can have
definite values together for the same state; they are represented by matrices
that commute. All this serves as a model for general rules of quantum
mechanics that we use later. _

We consider two spins and the corresponding magnetic moments for two
particles. We compute mean values of their products for a state where the
total spin is zero. From these we compute probabilities for different pairs of
values for projections of the two magnetic moments in various directions.

These quantities are measured in experiments. There are differing predict-
ions of what these experiments#hould find. One is the result of the
calculations using quantum mechanics. The other comes from arguments
about objective reality and causality that appear to be good common sense.
They grew out of Einstein’s criticism of quantum mechanics. They lead to -
predictions called Bell inequalities. We consider one argument that shows
quantum mechanics is inconsistent with simple ideas about reality and
causality. We also consider an example of a Bell inequality that conflicts
with a result of our calculations in quantum mechanics. Experiments agree
with quantum mechanics and not with the other predictions. This is a test of
quantum mechanics in an area where there was some doubt. It also shows
there is something wrong with the common sense about rcahty and causality
that disagrees with quantum mechanics.

The multiplication rules for the Pauli matrices are the key to all our
calculations for spins and magnetic moments. The other quantities we
consider are position coordinates and momenta of particles and quantities
made from them, such as angular momentum and energy. For these the key
equations are the commautation relauons of thc posmon and momentum
matrices.

These commutation relations imply Heisenberg’s uncertainty relation.
The product of the uncertainties for posstion and momentum in the same
direction cannot be smaller than Planck’s constant divided by 4#. We
obtain this as a particular ease of an uncestainty relation for any matrices



SUMMARY 3

that do not commute. We show that the lauer follows from the general rules
of quantum mechanics.

We consider the energy of an oscillator, a;parncle that osc1llates back and
forth along a line. The energy is quantized; it can have only certain discrete
values; there is no continupus range of possible values. We see this by
looking at a matrix used to represent the energy. We also show that it
follows from the formula for the energy in terms of position and momentum
and the commutation relation of the position and momentum matrices. This
quantization applies to the energy of oscillation of atoms in a molecule. The
energy in an atom also is quaritized, as described by the Bohr model. That is
related to quantization of the orbital angular momentum,

Matrices that represent angular momentum satisfy characteristic commu-
tation relations. Since orbital angular momentum is made from position and
momentum, the commutation relations of .the position and momentum
matrices imply commutation relations for the matrices representing orbital
angular momentum. The same commutation relations hold for the spin
angular momentum described by Pauli matrices. We show that these com-
mutation relations determine the values angular momentum can have. It is
quantized; it can have only certain discrete values; there is no contifnuous
range of possible values. This quantization applies to the energy of rota-
tional motion of atoms in a molecule, which can be expressed in terms’ of
the orbital arfgular momentum.

We find the possible values for the energy in a hydrogen atom. We use
Pauli’s method, which reduces the problem to one that is easilysolved with

-the mathematics of angular momentum. We see how different states with the
same energy correspond to different values of quantities that can be
measured together with the energy.

Quantum mechanics makes a distinction between a phys:cal quantuy and
its values. Every quantity is represented by a matrix. For each state, some
guantities have definite values and others do not. Equations relating differ-
enit quantities are written in terms of matrices rather than values. This
makes a difference.

For éxample, position and momentum are not quantized. Each has a
continuous range of possible values. We can see this from Heisenberg’s

uncertainty relation. The oscillator energy is just a combination of the

squares of the position and momentum. Yet it is quantized. It has no
continuous range of possible values. This can happen because the formula
for the energy in terms of position and momentum is written in terms of
" matrices. It coyld not happen if the formula were written in terms of values.

There are two kinds of equations that relate matrices. representing
physical guantitics. The formulas for energy and orbital angular momentum

N
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4 QUANTUM MECHANICS IN SIMPLE MATRIX FORM

in terms of position and momentum are examples of one kind. As relations
between physical quantities, these equations would be the same without
quantum mechanics. The only difference is that in quantum mechanics they
are written in terms of matrices.

Examples of the other kind are the commutation relations for position
‘and momentum and for angular momentum. They would make no sense at
jll without quantutn mechanics because they would make no sense if they
'werc written in terms of values rather than matrices. There were no
_eéquations like these before quantum mechanics. They are completely new.

To understand the meaning of these new equations, we consider the way
. physical quantities change when the space and time coordinates change and

the way different changes are related. The matrices are used two different
ways. They represent the quantities that describe a particular physical
system at a given time. They’ are ‘also used as rultipliers to change the
matrices that represent physical quantities to describe the system at another
time, or at a different location in space, or rotated to a different orientation
in space, or moving at a different velocity. This is where the new equations
come in.

All these changes correspond to changes of space and time coordinates.
They relate descriptions of the same system by observers who use different
coordinates. Changes of coordinates can be multiplied. The product of two
changes is defined simply as the result of making first one and then the
other. Each change of coordinates s represented by a matrix that is user as
a multiplier to change the matrices representing physical quantities. A
product of matrices that represent changes of coordinates represents the
product of the changes of coordinates.

Products of Pauli matrices correspond to products of 180° rotations. The
matrices that represent angular momentum are also used to construct the
matrices that represent small rotations. The commutation relations that are
characteristic of matrices representing angular momentum correspond to
multiplication of rotations. The matrices that represent momentum are used
to construct the matrices that represent changes of location in space. The—
commutation relations of position and momentum matrices correspond to
the way position coordinates are changed by changes of space location. In
the end, when we consider all the different changes of coordinates, we can
deduce almost all the commutation relations.
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1 A strance EQUATION

Quantum mechanics is the new language physicists use to describe the
things the world is made of and how they interact. It is the basic language of
atomic, molecular, solid-state, nuclear, and particle physics. Once found, it
was developed quickly, then extended and applied with continuing success
as each new area of physics grew. It emerged after a quarter century of work
in atomic physics in which experiments revealed properties of the atomic
world that could not be understood with the existing theories and led
physicists into new ways of thinking.

The first steps toward the new language were taken in 1925 by Werner

eisenberg, then Max Born and Pascual Jordan, those three in collabora-
tion, and Paul Dirac. Born was one of the first people to appreciate what
was happening. He expected a new mathematical language, a “quantum
thechanics,” would be needed for atomic physics, and he had the mathe-

" matical knowledge to develop it [1-3). At 42, Born was an established

physicist, a professot at Gottingen. Heisenberg, who was 23, had finished
his doctoral studies with Arnold Sommerfeld at Munich and had come to
Gottingen to work as Born's assistant. Here is part of Born's recollections. *

In Gottingen we also took part in the attempts to distill the unknown

me¢chanics of the atom out of the experimental results. The logical difficulty

became ever more acute. . Themofguessmgcorrect formulas. .. was
. brought to considerable pettecnon

This period was brought to a sudden end by Heisenberg... . He...replaced
guesswork by a mathematical rule. ... Heisenberg banished the picture of
.. electron orbits with definite radii and periods of rotation, because these
quantities are not observable; he demanded that the theory should be built up
by means of quadratic arrays...of transition probabilities.... To me the

R

"*From Ref. 4. © The Nobel Foundation, 1955.
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decisive part in his wosk is the requirement that one mist find a rule whereby
from a given array ... the 4rray for the square ... may be found (or, in general,
the multiplication law of such arrays).

By consideration of ...esamples... he found this rule.... This was in the
summer of 1925. Hc'mlberg . took leave of absence .. and handed over his
paper tp me for publication ..

Heisenberg's rule of multiplication left me no peace, and after a week of
intensive thought and tnial, I suddenly remembered an dlgebraic theory... .
Such quadratic arrays are quite familiar to mathematicians and are called
matrices, in association with a definite rule of multiplication. I applied this
rule to Heisenberg's quantum condition and found that it agreed for the
diagonal elements. It was easy 40 guess what the semaining elements must be,
namely, null; and immedjately there stoogd hefore me the strange formula

Qp—pg--z-"—;-.

This is one of the fundamental equagions of quantum mechanics. In it @
represents a position coordinate of a particle, P represents the momentum
of the particle in the same direction, and i and A are fixed numbers. For an
electron in a hydrogen atom, typical values for Q and P are 5 X 10~°
and 2 X 107! g - cm/s. These are small but otherwise ordinary phys;cal
quantities.

Then shouldn’t QP be the same as PQ? This equation says they are not
the same. That is mdeed strange. The number A, which is called Plancle’s
constant, is

h=6.626 x10"% g.cm?/s.

~

That is very small, so the equation says the diffesence between QP and PQ
is small, but aot zero.

There 1s something else that is strange in this equation. The aumber # has
the property that

so taking the square of both sides of the equation gives
_hl
P — PQ) = —.
(P - PO)' = 5

Isn’t the square of any number positive? How can the square of QP — PQ
be negative? We see there are some things that have to be learned before all
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this can be understood. We will consider she question about squares first
and then come back to the question of how Q¥ can be different from PQ.

We caa also begin to see that the quanturp langwege gives us a new view
of the world. We shall find many features of it thag differ from everyday
expenence and even from common sense. They represent an extension of
human knowledge to a much smaller scale of size, to atoms and atomic
particles, Nothing as small as Planck’s constant woulM ever be noticed in
everyday life. Quantum mechanics is ome of the most important and
inderesting accomplishments of science, byt it is not part of our common
knowledge. It bas been used for over halfa.century hut still, for each of us
who learns it, it is strange and wonderful.
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:Z IMAGINARY NUMBERS

The number i such that

is called an imaginary number. Inventing it did take some thought and
imagination.

Consider the familiar numbers. There are positive numbers such as %, 1, $,
2, V2 =1 4142 ., = 3.1415..., the number 0, and negative numbers
such @& — 1, —1, —#. Inventing the negative numbers took some imagi-
nation too. By —1 we mean the number such that

~1+1=0, .
-1+2=1,
-1+3=2,
and so on. The solution of the equation
| x+1=0
is
x=—1.

If negative numhers were not invented, there would be no solution of this
equation. s

If the imaginary niumber i were not invented, there would bc no numbgg
z thatisa soluuon of the equation’

2= —1.
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The positive and negative numbers and zero are all called real numbers. The
square of any real numbser is either zero or positive. 1t is never negative. For
example,

(-2 =4.

Therefore i cannot be a real number. It is different from all the real
" numbers, something new, just as —1 is different from all the positive
numbers.

Starting with — 1, we can make other negative numbers by multiplying
with positive numbers. For example,

~1/6 = (1/6)(-1)
- =a(-1).

Starting with i, we can make other imaginary numbers by multiplying with
real numbers. For example,

(1/6)i = (1/6)(i)
W2 = (2)(i)

—i= (-1)(1)
—im = {—7)(i).
Let y be a real number. Then
iy = yi

is an imaginary number. Its square is

(i)' =ity? = =y,

which is negative, or zero if y is zero.
In particular,

(=) = (-1%*= -1,

so the equation

has two solutions

z=i and z= —i.



