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PREFACE

One of the difficulties in an introductory book is to
communicate a sense of purpose. Only too easily to the beginner
does the book become a sequence of definitions, concepts, and
results which seem little more than curiousities leading nowhere
in particular., In this book I have tried to overcome this problem
by making my central aim the determination of all possible groups
of orders 1 to 15, together with some study of their structure.

By the time this aim is realised towards the end of the book, the
reader should have acquired the basic ideas and methods of group
theory. To make the book more useful to users of mathematics, in
particular students of rhysics and chemistry, I have included some
applications of permutation groups and a discussion of finite point
groups. The latter are the simplest examples of groups of partic-
ular interest to scientists. They occur as symmetry groups of
physical configurations such as molecules.,

Many ideas are discussed mainly in the exercises and the
solutions at the end of the book. However, such ideas are used
rarely in the body of the book. When they are, suitable references
are given. Other exercises test and reinforce the text in the usual

way .

A final chapter gives some idea of the directions in which the
interested reader may go after working through this book.
References to help in this are listed after the outline solutions.
Also in this chapter I have included the usual results on series
and solvable groups required for the study of the Galois group
occurring in field theory and algebraic number theory.

In my experience, the value of a book to the average student
is increased considerably by the inclusion of solutions to the
exercises. This is true in particular for students who, by choice
or necessity, work largely on their own. For this reason, I have
included outline solutions of all the exercises at the end of the
book. However, the student is advised to make a determined effort
to solve the problems himself (or herself) befqQre looking at the



vi

given solutions. I have made no attempt to grade the problems.
In any case one person's difficulty may be another person’'s
triviality.

For the basic notions of sets, relations, functions, &nd
linear algebra the reader is referred to my book 'Modern Algebrag
A Natural Approach, with Applications' (Ellis Horwood Ltg&.).

As a general reference this will be denoted by [G] in the text.
In general, references will be denoted by [#] for some number n
as given in detail in the bibliography at the end of the book.

This book is based on lectures given over many years at
Exeter both to specialist mathematicians and to those whose main
interests lay elsewhere yet who required the usual basic ideas in
group theory. The interests of the latter are served by the
first four chapters of this book, though I would be delighted
should they read further.

Exeter, 1980. C. F. Gardiner
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CHAPTER 1.
FIRST IDEAS

1.1 Introduction

There 1s some evidence to suggest that a sense of symmetry
is at least as fundamental as a sense of number, although the
concept of number predates the concept of symmetry.

An implicit use of symmetry occurs in mathematics, partic-
ularly geometry, as far back as the Greeks some 2,500 years ago.
But strangely, the Greeks never captured the essence of symmetry
explicitly. A detailed, but informal, discussion of symmetry is
given by H. Weyl in his book "Symmetry" published by the Princeton
University Press in 1952. The reader is recommended to study
Weyl's book alongside the present one. For a visual representation
of some of the ideas that we shall discuss, see “The Graphic
Work of M. C. Escher" - Escher (Pan-Ballantine 1972, Oldbourne
Press 1961).

In this book we regard group theory as the conscious and
explicit study of symmetry. As such the subject emerged around
1830 A.D. At that time most of the leading mathematicians of the
day were engrossed in the following problem.

For any real numbers a, b, ¢, with a # 0, the equation
ax? + bx + ¢ = 0 has a solution formula, namely:

x =

-b +v/bZ =~ 4gc
=l

a



The cubic and quartic equations also have solution formulae
of a similar form involving root operations on the coefficients
of the equation, though more complicated and with roots other
than square roots.

Problem: Is there a solution formula of this form for any
quintic equation: ax® + bz* + cz® + dz? + ex + ¢ =0 7?

Around 1830, Abel answered this question in the negative.
Shortly afterwards Galois gave the complete solution for equations
of any degree; and more besides. His methods exploited symmetry
explicitly in a way that led to the study of groups, at least of
a certain type, the so-called permutation groups.

However, perhaps the most obvious way of seeing the
connection between formal group theory and the intuitive idea of
symmetry that it attempts to capture is by way of geometry, as
follows.

Take an equilateral triangle in space and ask how you can.
move it so that it appears not to have moved. This is to be the
measure of its symmetry. Two motions are considered distinct
if and only if their 'end effects' are different. To be more
precise we number the vertices 1, 2 and 3, and consider two
motions to be distinct if they produce different arrangements of
the vertices in space, that is different permutations of the set
{1, 2, 3} , when the triangle has apparently returned to its
original position.

Take L to be a line through the vertex 1 perpendicular to
the side joining vertices labelled 2 and 3 (see Figure 1.1.1).

3 2

Figure 1.1.1

We consider L to be fixed in space and move the triangle about it.
We consider two basic motions.



(1) A rotation about an axis perpendicular to the plane
of the triangle in an anti-clockwise sense through 27/3 radians.
Denote this motion by the symbol a.

(2) A rotation about the axis L through 7 radians. Denote
this motion by the symbol b.

We write ab to denote the motion » followed by the motion a.
We write b? to denote b followed by b, and so on.

The reader may find it convenient to cut an equilateral
triangle out of cardboard in order to carry out the following
manipulations. This avoids the tedium of making countless
drawings.

We consider the effect of each of the following motions on
the triangle in its starting position as shown in Figure 1.1.1
a, a®, a®, b, b*, ab, a?b, a’b, ba. The results are shown in
Figure 1.1.2.

1 2 3
a a a
2 1 3 2 1

3 3 2
b
b
1 3 2 1
3 1 2 3 1 2 3
lb
1 1 2
Here a’b takes into
and so on.
3 2 3 2 3 1

Figure 1.1.2



In this way we obtain the 6 possible permutations on the
set {1, 2, 3} of vertices of the triangle. Since we cannot get
any more permutations, we must have obtained all possible distinct
motions of the triangle in space which leave it apparently fixed

in space.

From a given starting position we have obtained all possible
permutations on the vertices and hence all possible s’'mmetries of
the triangle, using just the motions a and b. 1In fact there are
6 possible motions, as measured by their effects, namely:

a, a*, b, ab, a’b, and a’® = b? = ¢, where we use e to denote the
identity motion; that is the motion leaving the triangle fixed.

As is customary in modern mathematics we wish to express the
above procedure of treating symmetry in an axiomatic form; that
is a form which does not depend on the particular example that we
have used in our discussion. To this end we consider the
essential ideas involved in our discussion of the symmetry of the
equilateral triangle.

The symmetry appears to be described by 6 motions symbolised
by a, a?, b, ab, a’b, and a® = b? = e; and the way in which these
6 motions can be combined in a kind of product. For example:

a’b followed by ab has the same effect (starting from the same
initial position, such as that in Figure 1.1.1) as a?.

We can represent this by writing ab.q?b = a?2.

In order to express this in an abstract way we need:
(1) a set ¢ (of motions)

(2) a product defined on G; that is a rule which
assigns a unique element z of ¢ to a given ordered pair of
elements z, .y of G. 1In other words, we want a binary operation
on G.

This is often expressed by saying that there is a function f:
G *x G+ G, where f((x, y)) = z. We shall write f((z, y)) = zy.

But this is not enough. We alsoc need some axioms telling
us how the product behaves. For example, if we were talking
about a product of integers, then we would expect to have an



axiom which said:
z{yz) = (xyl=z

Because, if x, y and z are interpreted as integers and xy is the
usual product of zr and y, then the associative rule holds; in
particular with z = 3, y = 7, 2 = 2, we have: 3 x (7 x 2) =

(3 x 7) x 2.

Our next task, therefore, is to find the rules which govern
the behaviour of the product in our case. Now for us z(y3) means
the motion z followed by the motion y and then the result
followed by the motion x. This is exactly the same as (xy)az.
Thus, (zxy)z = z(yz). Hence we want the associative rule just
as for the usual product of integers.

For integers, zy = yx, but we note that in our case .ab ¥ ba.
Hence the commutative rule does not hold for us. However, in our
way of using motions to express the symmetry of an object in
space, it is clear that we must always have an identity motion,
as represented by the symbol e in our example, with the property
that ex = z = ze for all z. Moreover for each motion zx there
must be an inverse motion which undoes the effect of x. For
example, in the symmetry of the equilateral triangle baZ.ab = e.
Hence ba? undoes the effect of ab. 1If r den>tes the motion,
then we use the symbol z~! to denote the motion which undoes the
effect of x. We call z~! the inverse of . From z .z = e = z.2~
we deduce that if z~! is the inverse of x, then z is the inverse
of z~!.

Putting together the various parts of the above discussion
we arrive at the following attempt at an abstract formulation of
the intuitive notion of symmetry.

1.2 The Definition of a Group

A group consists of:
(1) a set G,

(2) a product on G, where xy denotes the product

1



of the elements x and y of G; together with the following axioms.

(3) The associative rule x(yz) = (zy)z holds for all
x, Y, 2€0G.

(4) There exists e in G with the property that
ex = x = xe for all z in G. (e is unique and is called the
identity of G. The proof of uniqueness is in Exercise 1.1.)

(5) To each r€ G there exists z' in G with the property
that x'x = ¢ = xz'. (x' is unique and is called the inverse of z.
The proof of uniqueness is in Exercise 1.l1. Once uniqueness is
established the inverse of x can be given a special symbol,
namely z~!.)

If we have also:

(6) zy = yx for all x, y € G, we call G an abelian or
commutative group.

'I£ G has a.finite number of elements it is called a finite
group, dtherwise it is an infinite group.

Note: (1) Unless otherwise stated, e will always be used
to denote the identity of the group.

(2) Indices are defined as follows:

L] n

2 = e, 2" =z z z ... z (n factors), = " = (z~)*, n > O. By

the uniqueness of the inverse, (z")-! = (z-1)".

We leave the reader to check that the usual laws of indices
hold.

The group concept attempts to make precise our intuitive
notion of symmetry. 1In fact, the above axioms 3, 4, 5 assert
more than is actually required to define a group. This question
is taken up in Exercises 1.2 and 1.3.

1.3 The General Associative Law

This law asserts that we can insert brackets in any way that »
makes sense in the product of n» 2 3 elements of the group without



affecting the value of the product. For example:
({ad)e) (d(gf)) = (a((be)(dg)))f .

PROOF The required result is true when n = 3. This is just
the ordinary associative law.

Suppose the result is true for products of less than »n
elements. We consider a product of n elements. Suppose it has
been calculated in one way to give a final product of 2 factors:

(a1a2 . czl,‘)(ax,.,‘_las+2 . an)

and in another way to give a product of the 2 factors:

(ala2 cte as)(as+las+2 ot an) *

Let r < 8. Notice that the products within each bracket involve
less than n factors so are well-defined whatever the positions of
the brackets within them. If r = g, the required result follows

at once. If r < g, since s < n, we can write:

(ala2 ces as)(a8+l <o a) (lajay ... ar)(ar+1 R as))(a8+1 ceea,

(ala2 . ar)((ar+1 e as)(as+1 ...an)

by ordinary associativity,

(ala2 e ar)(ar+l ees an) .

Thus the required result holds for products of n elements if
it holds for products of less than n elements. An appeal to
induction completes the proof.

1.4 Further Examples of Groups

We derived the concept of a group from our consideration
of the symmetry of the equilateral triangle. At the moment this



provides us with our only example of a group. Let us pause
for a moment to remedy this.

We leave the reader to check that the following are indeed

examples of groups.

(1) The set of all non-singular n x n matrices over
the real numbers under ordinary matrix multiplication. This is
called the general linear group of degree n over R and is
denoted by GL_(R) (see [G].)

(2) The set of integers under addition. This group
is abelian and is denoted by (3%, +).

(3) The set of residue classes of integers modulo n
under addition, denoted by (gn, +). This group is constructed
as follows.

Take % and define on it an equivalence relation = as follows.
a = b if and only if n divides a -~ b, written n| (a - b).

The equivalence class containing aq we write as a. We
define addition of classes by a + b = {a + b).

The reader should check that this is a valid definition
bearing in mind that a = a', whenever n} (a - a'), and that our
definition has been given in terms of particular elements of the
equivalence classes involved.

(4) The set {I, 2, 3, ..., TP - 1)} of non-zero elements
of 2 , the set of residue classes of integers modulo a prime p,
under the multiplication: 2.5 = (ab) .

This group is denoted by !; = (Ep- {0}, .). Here g, - {0}
means the set gp less the zero 0. If p = 5, we have:

g; = (2, {0}, 0 = (1,3, 3 %)

(5) The set {1, Z, -1, -7} under the usual product of
complex numbers. Note that all members of this group may be
written in terms of ¢ as follows: {7, 2, 2%, Z*}, Such a group
is said to be cyclic. All its members are powers of a single
member.



(6) The set of 2 x 2 matrices:
1 (o] [o} 1 -1 [¢] o -1
o 1 ‘-1 o ’ o -1 ’ 1 [}

under the usual multiplication of matrices.

_(7) If F is a field then F* = F - {0} is a group under
the multiplication in the field F (see (4) above).

(8) Let F be any field. Then F is a group under the
addition in the field. We denote this group by (P, +).

1.5 Aims

In any science one of the major preoccupations is the class-
ification of the objects of study. Another preoccupation is
the investigation of structure; that is the way in which the
objects of interest are constructed from simpler objects and
how this affects their properties.

In group theory the object of study is the group. Hence
the major aims of group theory are to classify the different
types of - group and to see how'groups can be constructed from
other groups which are simpler according to some well-defined
criteria.

However, in a short introductory book like this, we can
treat only a few elementary cases. Some of these will be
discussed in the text, others will occur in exercises. In the
course of following these aims many ideas, methods, and results
will be considered which will prove useful in the applications
of group theory to other branches of mathematics and to other
sciences.

Let us return now to a closer study of the symmetry group
of the equilateral triangle. This study will provide us with
some basic ideas and techniques which will enable us to answer
immediately the problem of classification for groups which have
l, 2, 3, or 4 elements.



