

Richard Wiener Richard Sincovec

University of Colorado at Colorado Springs
Western Software Development

PROGRAMMING
IN ADA

Ada is a trademark of the U.S. Department of Defense (Ada Joint Program Office).

John Wiley & Sons
New York Chichester Brisbane Toronto Singapore

To our parents,

Irving, Mary and Frank, Kathryn.
And to our families,
Sheila, Erik, Marc
and Deanna, Mary, James.

Copyright © 1983, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:

Wiener, Richard, 1941—
Programming in Ada.

Includes index.

1. Ada (Computer program language) I. Sincovec,
Richard. II. Title.
QA76.73.A35W53 1983 001.64'24 82-20046
ISBN 0-471-87089-7

Printed in the United States of America

10987654321

PREFACE

The primary goal of this book is to introduce and illustrate the major features of
a new programming language, Ada. The book is aimed at practicing computer
science and data processing professionals and students of computer science.
Ada’s many features for supporting software development and maintenance
make the language ideally suited for those involved in large scale software
projects. Although Ada builds on many concepts of Pascal and PL/1, we do not
assume that the reader has programmed in either of these languages. We as-
sume that the reader has some prior programming experience in at least one
high level language such as Fortran, Basic, or Pascal.

Relatively few Ada courses are being taught at colleges or universities
because of the current unavailability of Ada compilers. With the imminent
completion of Ada compilers, many computer science departments will begin
to offer Ada courses, since this language can be used as a vehicle for introduc-
ing advanced programming concepts (e.g., data abstraction, data hiding, con-
current processing, complex scoping, programming environments) and for
teaching software engineering. When the compilers become available, we be-
lieve that Ada should be first taught at the junior or senior level. Since many
computer science departments have introduced the elements of structured pro-
gramming and Pascal at the freshman level and have exercised these concepts
in a sophomore level data structures course, a junior or senior level Ada course
that incorporates principles of advanced programming and software engineer-
ing appears to us to be most appropriate. By the time students encounter Ada,
they should be concerned about the methodology associated with the develop-
ment of a large software project—Ada provides an ideal mechanism for teach-
ing such methodology—and not just about writing a ‘‘correct’” program. To be
able to exploit the full power of Ada, students should have some skills in
numerical analysis, data structures, and algorithm design.

Ada is a more complex language than many of the languages that are
currently enjoying heavy use such as Fortran, Basic, and Pascal. The military
language reference manual (Reference 2) and several early Ada textbooks (e.g.,
References 1, 3, 6) present the details of the Ada language in a formal way. The

\'J

VI Prerace

relatively few complete Ada programs that are presented in these books are
often short and sometimes trivial.

This book gives many nontrivial Ada programs to support the presentation
of new Ada constructs and concepts. Application programs are presented in the
areas of data structures, numerical analysis, and algorithm design. As we intro-
duce new Ada features, some of the programs are updated to demonstrate the
improvements in program design that the more sophisticated features support.
We hope that the reader will acquire a faster and more meaningful appreciation
of the scope and power of the Ada language by studying these Ada programs.

We employ an informal style of narrative, and we hope that the reader is
not offended by our occasional attempts at humor. By concentrating on the
major and significant language features and not getting bogged down on some of
the fine and often complex detail(s) associated with a language feature (occa-
sionally such details are omitted entirely), we hope to have enhanced the value
of this book as a learning tool. We suggest that the reader use a current lan-
guage reference manual as a supplement to this book, since we make no pre-
tense of covering ¢very fine detail of the language.

Chapters 1 through 8 present the basic control and data structures associ-
ated with Ada. The student who is experienced with Pascal or PL/1 should be
able to go quickly through this material. The student who is unfamiliar with
Pascal or PL/1 should study carefully the new concepts associated with the
control and data structure features discussed in these chapters. Chapters 9
through 16 set forth powerful and advanced features of the language that set it
apart from previous programming languages. Many of the concepts associated
with advanced programming and software engineering are supported in the
material of these later chapters, which present large Ada programs that illus-
trate the full power of Ada. We anticipate that the material of this book will
support a one semester course in Ada programming.

We acknowledge the generous support of the Microsystems Institute, a
subsidiary of the Western Digital Corporation, in helping us produce this book.
In particular, we thank Alan Boal, president of the Microsystems Institute, for
his confidence in us and his vision, without which this book would not be a
reality. We thank William Carlson, president of the Advanced Systems Division
of Western Digital, for his support. Both Western Digital and the Microsystems
Institute have provided us with valuable resources and support. Many of the
programs that appear in this book were tested using a Western Digital Supermi-
cro (TM) computer and a MicroAda (TM) compiler.

Under the sponsorship of the Microsystems Institute we have been offer-
ing a series of Ada short courses for people in government and industry. Some
of the useful suggestions that we have obtained from the students in these
courses have been incorporated in this book. We also thank Kathleen D.
Velick, of Western Digital, for her helpful suggestions and support during the
production of this book. Robert Wilson, president of Hi-Country Data Sys-
tems, provided invaluable support during the production stage.

prerace VI

We are deeply grateful for the support of our families during the long and
sometimes lonely hours that we spent writing.

Richard Wiener Richard Sincovec
University of Colorado at Western Software Development
Colorado Springs P.O. Box 953

Colorado Springs, Colorado Woodland Park, Colorado

CONTENTS

CHAPTER 1
TOP-DOWN VIEW OF ADA, 1

1.1 Introduction, 1

1.2 History and the Problem
Addressed by Ada, 2

1.3 What Is Ada?, 3

1.4 Overloading in Ada, 7

1.5 Separate Compilation in Ada, 9

1.6 Software Engineering in Ada, 9

1.7 Programming in Ada, 10

1.8 Real-Time Applications in Ada,
11

1.9 The Ada Environment, 13

1.10 Organization of the Book, 14

CHAPTER 2
AT THE VERY BOTTOM, 17

2.1 Input-Output; Simple Ada
Program, 17

2.2 Identifiers; Intrinsic Scalar Data
Types; Assignment, 19

2.3 Expressions; Operators, 21
2.3.1 Integer Expressions, 22
2.3.2 Floating Point

Expressions, 23

2.3.3 Boolean Expressions, 24

2.4 Lexical Units and Reserved
Words, 25

2.5 Summary, 26

CHAPTER 3
IF THEN WHAT ELSE? MAYBE
ELSIF. WE'LL BUILD A CASE, 29

3.1 IF THEN, 29
3.2 IF THEN ELSE, 30
3.3 GOTO, 33
3.4 IF THEN ELSIF ELSE, 34
3.5 Now We Build a Case: The
CASE Statement, 36
3.6 Summary, 38
CHAPTER 4
ROUND AND ROUND WE GO;
LOOPS, 41
4.1 The Simple Loop, 42
42 FOR LOOP, 42
4.3 WHILE LOOP, 44
4.4 Different Kinds of EXIT from
Loops, 46
4.4.1 Simple EXIT, 46
4.4.2 EXIT WHEN, 48
4.4.3 EXIT (NAME OF LOOP)
WHEN, 49
4.4.4 Unconditional EXIT, 50
4.5 Ada Programs to Illustrate

Various Loops, 50

4.5.1 Series Approximation to
the Exponential, 51

4.5.2 Prime Number Series, 52

IX

X CONTENTS

4.6

4.5.3 Square Root of a Real
Number, 53
4.5.4 Sum of a Series, 54

Summary, 54

CHAPTER 5
ARRAYS, 57

5.1

5.2
5.3

5.4

Constrained Arrays, 58

5.1.1 Sorted Tables, 60

5.1.2 Another Prime Example,
66

Array Assignment
Statements, 67

Array Equality and Array
Constants, 68

5.1.5 Array Slices, 69

Unconstrained Arrays, 71

Attributes Associated with
Arrays, 72

Summary, 73

5.1.3

5.14

CHAPTER 6
TYPES, 75

6.1

6.2

6.3

6.4

6.5

Types in Ada, 75

6.1.1 Predefined Types, 76

6.1.2 Type Declaration, 78

6.1.3 Subtype Declaration, 79

6.1.4 Derived Types and
Conversion, 80

Discrete Types, 82

6.2.1 Integer Types, 82
6.2.2 Enumeration Types, 85
6.2.3 Boolean Types, 89
6.2.4 Character Types, 90

Real Types, 91
6.3.1 Floating Point Types, 91
6.3.2 Fixed Point Types, 94

Other Types, 97
6.4.1 The Natural Numbers, 97
6.4.2 Strings, 97

Summary, 98

CHAPTER 7
SUBPROGRAMS, 101

7.1

7.2

7.3

7.4

7.5
7.6

7.7

7.8

7.9

Procedures Without Parameters;
Local and Global Variables, 101

Transfer of Parameters in and out
of Procedures; Binding Modes,
106
7.2.1
7.2.2

Flow Direction ““In’’, 106
Flow Direction *‘In Out’’,
107

Flow Direction “‘Out’’,
107

Subprogram Parameter Types,
109

Transferring Parameters to

Subprograms by Name; Default

Values, 110

7.4.1 Transferring Parameters
by Name, 110

7.4.2 Default Values for
Parameters in
Subprograms, 111

7.2.3

Function Subprograms, 112

Overloading of Function
Operators and Subprograms, 114

Some Programs Restructured,
117

More Ada Programs, 122

7.8.1 Procedures and Functions
on Strings, 123

7.8.2 Solving Simultaneous
Equations, 126

Summary, 130

CHAPTER 8
ON THE RECORD, 133

8.1

The Record Type, 133

8.1.1 Sign on the Dotted Line:
Dot Notation for Record
Access, 134

8.1.2 Initialization of Records,
136

8.2 Variant Records
8.2.1 Record Types of Varying
Size, 149
8.2.2 Record Types of Varying
Structure, 150
8.3 Summary, 151
CHAPTER 9
ATTRIBUTES, 153
9.1 Scalar Type and Discrete Type
Attributes, 153
9.2 Fixed Point Attributes, 155
9.3 Attributes for Floating Point
Types, 157
9.4 Attributes for Arrays, 159
9.5 Other Attributes, 161
9.5.1 The ADDRESS Attribute,
162
9.5.2 The SIZE Attribute, 162
9.5.3 The BASE Attribute, 162
9.5.4 Record Attributes, 162
9.5.5 Task Attributes, 163
9.5.6 Access Type Attributes,
163
9.6 Summary, 163
CHAPTER 10
EXCEPTIONS TO THE RULE, 167
10.1 Declaration of Exceptions, 168
10.2 How to Get a Raise?, 168

Positional and
Nonpositional
Assignments to Records,
137

Records as Formal
Subprogram Parameters,
137

Vector Addition Example
to Hlustrate Records, 138
Record Structure Using
Linked List, 139

Tree Structure Using
Records, 146

8.14

8.1.5

8.1.6

8.1.7

10.3

10.4
10.5

10.6
10.7

10.8

10.9

contents Xi

How to Handle an Exception?,
169

Propagating Exceptions, 172
Predefined Exceptions, 175

10.5.1 CONSTRAINT_ERROR,
176
NUMERIC_ERROR,
176

SELECT_ERROR, 177
10.5.4 STORAGE_ERROR, 177
10.5.5 TASKING_ERROR, 177

Suppressing Exceptions, 178

10.5.2

10.5.3

Software Engineering and
Exceptions, 178

An Example Using Stacks and
Exceptions, 179

Summary, 182

CHAPTER 11
TASKS, 185

11.1

11.2

11.3

11.4
11.5
11.6
11.7
11.8

Task Specification and Task
Body, 186

Task Initiation and Execution,
188

Task Synchronization and
Communication, 190

The Select Statement, 192
The Delay Statement, 199
Task Termination, 202
Task Types, 203
Summary, 206

CHAPTER 12
DYNAMIC ALLOCATION AND
RECURSION, 209

12.1

122

12.3

Simple Access Types; Pointers,
210

Record Access Types and
Recursion, 214

Linked Lists Using Dynamic
Allocation, 219

CONTENTS

12.4 Hash Sorting Using Dynamic
Allocation, 224
12.5 More on Recursion, 226
12.6 Greatest Common Divisor Using
Recursion, 227
12.7 Binary Search of Sorted Array
Using Recursion, 227
12.8 Permutation of Objects Using
Recursion, 229
12.9 Adaptive Integration Using
Recursion, 230
12.10 Summary, 232
CHAPTER 13
LET’'S PACKAGE WHAT WE'VE
DONE, 235
13.1 Packages of Data Types and Data
Objects, 236
13.2 Packages That Contain
Subprograms, 238
13.3 Private Data Types, 241
13.4 Limited Private Data Types, 246
13.5 Illustrative Ada Programs, 247
13.5.1 Linear Systems Package:
A Partial Rework of
Program 7.8-2, 248
13.5.2 Package of Special
Input/Qutput, 259
13.6 Summary, 261
CHAPTER 14

TUNNEL VISION: SCOPING
AND VISIBILITY, 263

14.1
14.2
14.3
14.4

Blocks, 264
Scope of Labels, 267
Scope of Loop Parameters, 268

Block Structure with
Subprograms, 269

14.5 Scope and Visibility of Packages,
271
14.6 Rules for Naming Identifiers, 274
14.6.1 Identifiers in
Enumeration Types, 274
14.6.2 Overloading of
Subprograms, 275
14.7 Summary, 276
CHAPTER 15

GENERICS, 279

15.1

Have Some Gin, Eric? What Is a
Generic?, 279

15.2 Generic Declarations, 285
15.2.1 Generic Type
Parameters, 285
15.2.2 Generic Subprogram
Parameters, 286
15.3 Generic Instantiation, 288
15.4 Examples of Generic
Subprograms, 292
15.4.1 An Adaptive Generic
Integration Subprogram,
292
15.4.2 A Generic Sorting
Algorithm, 294
15.5 Summary, 297
CHAPTER 16
COMPILATION UNITS;
SOFTWARE ENGINEERING, 299
16.1 Compilation Units, 300
16.2 Facilities Accessible to a
Compilation Unit, 301
16.3 Order of Compilation, 303
16.4 Order of Recompilation, 304
16.5 Comments on Software
Engineering, 304
16.6 A Programming Example, 305

APPENDIX A
PRAGMAS, 311

APPENDIX B
PACKAGE TEXT_IO, 313

APPENDIX C
PACKAGE STANDARD, 319

contents Xili

APPENDIX D

COMPARISON OF ADA AND
PASCAL, 323

APPENDIX E
ADA SYNTAX, 327

REFERENCES, 340

INDEX, 341

LIST OF PROGRAMS

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

2.11
2.1-2
2.21
2.3-1
232
233
2.34
3.1-1
3.21
3.2-2
341
3.51
4.11
4.3-1
4.4-1
4.4-2
4.4-3
4.4-4
4.5-1
4.5-2
4.5-3
4.5-4
5.1-1
5.1-2
5.1-3
5.14
5.1-5
5.1-6
5.2-1
6.1-1
6.1-2
6.2-1
6.2-2

Input-Output

More Output

Data Types

Integer Expressions
Floating Point Expressions
Logical Expressions
Short-Circuiting

If Then

If Then Else

Quadratic Equations
Income Survey

Income Survey Using Case
Average Value

Vowel Count

Income Survey Without Goto
Exit When Illustration
Labeled Loop

Outer Loop, Inner Loop Control
Exponential Approximation
Prime Numbers

Square Root

Sum Exceeds 10,000

Input List of Names
Exchange Sort

Bubble Sort

Alphabetize

Faster Prime Numbers
Grades for Class
Unconstrained Array
Subtypes

Derived Types and Conversion
Integer Types

Enumeration Types

XVi st oF PrROGRAMS

PROGRAM 6.2-3
PROGRAM 6.3-1
PROGRAM 6.3-2
PROGRAM 6.3-3
PROGRAM 7.1-1
PROGRAM 7.1-2
PROGRAM 7.2-1
PROGRAM 7.3-1
PROGRAM 7.5-1
PROGRAM 7.5-2
PROGRAM 7.7-1
PROGRAM 17.7-2
PROGRAM 7.8-1
PROGRAM 7.8-2
PROGRAM 8.1-1
PROGRAM 8.1-2
PROGRAM 8.1-3
PROGRAM 8.14
PROGRAM 9.1-1
PROGRAM 9.2-1
PROGRAM 9.3-1
PROGRAM 94-1
PROGRAM 9.4-2
PROGRAM 10.3-1
PROGRAM 10.4-1
PROGRAM 10.4-2
PROGRAM 10.8-1
PROGRAM 11.1-1
PROGRAM 11.2-1
PROGRAM 11.4-1
PROGRAM 11.4-2
PROGRAM 11.5-1
PROGRAM 12.1-1
PROGRAM 12.2-1
PROGRAM 12.3-1
PROGRAM 124-1
PROGRAM 12.6-1
PROGRAM 12.7-1
PROGRAM 12.8-1
PROGRAM 12.9-1
PROGRAM 13.2-1

User-Defined Enumeration Types
Float Types

Fixed Error

Fixed Point Types

Trivial Program

Local Versus Global Variables
Parameter Flow Direction
Subprogram Parameter Types
Mathematical Function Evaluation
Maximum Minimum

Exchange Sort Reworked
Alphabetize Reworked

String Utilities

Solution of N Simultaneous Equations
Weather Records

Vector Addition Magnitude
Linked Lists Using Array of Records
Duplicates

Scalar and Discrete Attributes
Fixed Point Attributes

Floating Point Attributes

Array Attributes

Matrix Vector Mult Main
Exception Example

Exception Propagation
Exception Declaration

Stack Example

Task Specification and Body
Parent Task

Reader—Writer Task

Calculator

Timer

Dynamic Allocation

Binary Tree Sort

Linked Lists Using Dynamic Allocation
Dynamic Hash Sort

Greatest Common Divisor
Binary Search

Permutations

Adaptive Integration

Package Vectors

87

94

96

97
103
104
107
109
112
113
118
120
123
127
135
138
140
146
154
156
158
160
160
170
173
174
180
187
189
194
196
200
212
217
220
224
227
228
229
230
238

PROGRAM 13.2-2
PROGRAM 13.3-1
PROGRAM 13.3-2
PROGRAM 13.4-1
PROGRAM 13.5-1
PROGRAM 13.5-2
PROGRAM 13.5-3
PROGRAM 13.5-4
PROGRAM 13.5-5
PROGRAM 13.5-6
PROGRAM 14.1-1
PROGRAM 14.1-2
PROGRAM 14.3-1
PROGRAM 14.4-1
PROGRAM 14.5-1
PROGRAM 14.5-2
PROGRAM 14.6-1
PROGRAM 14.6-2
PROGRAM 15.1-1
PROGRAM 15.1-2
PROGRAM 154-1
PROGRAM 15.4-2
PROGRAM 154-3
PROGRAM 16.2-1
PROGRAM 16.6-1

LIST OF PROGRAMS XVl

Vector Manipulations

Package Vectors Modified

Vector Manipulations Modified
Illustrate Limited Private Data Types
Package Linear Systems

Simultaneous Equations

Matrix Inversion

Package Linear Systems Without Size Dependency
Simultaneous Equations Modified
Special Output

Illustration of Block

Nested Blocks

Scope of Loop Parameters

Scope and Visibility of Subprogram Entities
Component Selection

More Component Selection
Enumeration Value Overloading
Overloading Subprogram Names
Package Generic Stack

Use of Generic Stacks

Generic Functions

Generic Sort

Use of Generic Sort

Package LL1—Move

Separate Compilation of Linear Systems

240
242
245
247
248
251
252
254
257
259
265
266
268
269
272
273
274
275
281
283
293
294
296
302
305

Chapter 1

TOP-DOWN VIEW OF ADA

1.1 INTRODUCTION

Ada is a programming language that was designed to satisfy a variety of pro-
gramming requirements including the reduction in the overall cost of software
systems. It is to be used in such numerical applications as large numerical and
statistical simulation packages, and it is intended to be compatible with the
mathematical and statistical software libraries of the future. The development
of computer operating systems and compilers is also a goal that has been set for
Ada. Finally, Ada is to be used in applications with real-time and concurrent
execution requirements such as those found in the avionics system of aircraft
or in the coordination of complex embedded computer systems. The language
is considered to be a major advance in programming technology because it
.brings together the best features of earlier programming languages.

The structure of Ada is simple, yet its capabilities make it one of the most
powerful programming languages. Ada contains features that should signifi-
cantly lower the cost of software development and maintenance. These fea-
tures include the option of separate compilation of program unit specifications
and program unit bodies, software packages, generics, tasks to support embed-
ded computer systems, overloading of operators, flexible scoping and visibility
rules for data objects, subprograms, and strong typing of variables.

In this book we present the features of Ada in a systematic, easy to under-
stand manner. That is, as we introduce each new feature of the language, we
usually present a complete Ada program illustrating its use. Almost every
program in this book was executed and checked on a Western Digital Mi-
croengine computer using their Micro-Ada compiler. Often the examples con-

1

2 TOP-DOWN VIEW OF ADA

sist of previous examples, reworked to demonstrate the use of a new language
construct.

Anyone with programming experience should be able to grasp the essential
details of Ada after one reading of this book. The approach we use to present
Ada is carefully tailored to those readers with programming experience in
almost any high level language. Our examples demonstrate the use of Adaona
variety of problems that arise in computer science, engineering, mathematics,
-and statistics. The programs should be easily readable, illustrating that Ada
minimizes the slope of the learning curve for becoming familiar with software
developed by others.

4.2 HISTORY AND THE PROBLEM ADDRESSED BY ADA

Ada was sponsored by the U.S. Department of Defense (DoD) in an attempt to
reduce the rapidly increasing expense of military software systems. DoD iden-
tified language proliferation as a primary cause of the software problem. Cus-
tom languages and compilers were being developed for specific applications,
but they often led to project failure because of inadequate languages and associ-
ated compiler problems. These factors prompted DoD, in 1975, to form the
High Order Language Working Group (HOLWG). The HOLWG was charged
with identifying and recommending solutions to DoD’s language problem.
Many existing languages were evaluated and found to be inadequate for the
long term, and no language was found to satisfy the requirements for a common
language. Additional studies indicated that a new language should be designed
to meet DoD’s requirements.

The language that evolved has become known as Ada. Ada is not an
acronym like most computer language names. Rather it is the first name of Ada
Lovelace, who worked with Charles Babbage on his difference machine. In
today’s terminology Ada Lovelace would probably be considered to be Bab-
bage’s programmer. That would make her the world’s first female programmer.
Some people say that Ada may be the last major high level language that will
ever be developed, since automatic program generation techniques may be
available in the not too distant future. Thus it seems fitting that the last major
programming language should be named in honor of the first female pro-
grammer.

DoD is certainly not the only organization that has experienced the rapidly
increasing cost of software systems. Many organizations have probably, on
occasion, found their software development projects behind schedule, or the
final development cost over budget, or the delivered program unreliable and/or
not satisfying the original problem specifications. Another factor that has con-
tributed significantly to increasing software cost is software maintenance. It is
not unusual for the life cycle maintenance cost to exceed the original develop-
ment cost. Anyone who has been involved in large software projects has proba-
bly experienced most of these dilemmas associated with computer software.

Other factors besides language proliferation have contributed to burgeon-

1.3 WHAT IS ADA? 3

ing software costs. Another principal factor has been the inability to manage
complexity. Structured programming, top-down program development metho-
dologies, and program development and analysis tools have been used to deal
with this problem. Studies have shown that this approach can increase produc-
tivity by as much as a factor of five when measured with respect to the de-
bugged number of instructions per day that are produced. However, correct
methodology does not force the programmer or the programming team to orga-
. nize the complexity of the problem before program development is started. The
use of high order programming languages is also advocated to reduce software
costs. But it is well known that the use of a high order language alone does not
necessarily increase productivity unless the language is properly used in con-
junction with modern programming methodologies.

The high cost of software has been accentuated by declining hardware
costs. It is not unusual for an organization to discover that software costs more
than 75% of its total computing budget consisting of computer hardware, soft-
ware development, and software maintenance. The trend seems to indicate that
eventually hardware costs will comprise only 20% of the total computing
budget, with software development and maintenance accounting for 80%.

The diversity of programming languages in common use requires that pro-
grammers become expert in several different computer languages. Thus the
employing organization must hire programmers with different language special-
ties. Often programs developed in one computer language must be translated to
other languages before they can be used on a newly acquired computer system
or transported to the computer of another organization. Software developed in
a computer language is often not portable from one computer to another or
from one compiler to another on the same computer. Some software develop-
ment tools have been developed to partially solve the portability issue. In any
case, such problems have contributed significantly to software development
and software maintenance costs.

Another fundamental problem is that as a programmer becomes fluent or
expert in one particular programming language, he or she tends to develop
software in that language regardless of whether the language is suitable for the
problem at hand. The resulting program is often difficult to verify and usually
not very readable, hence is also difficult to maintain. These factors have a
significant impact on the life cycle cost of the resulting software.

Since some languages now in common use do not support modern program
development methodologies, they also contribute to high software costs. That
is, the use of such languages tend to result in late, error-prone software that is
costly to maintain.

1.3 WHATIS ADA?

Ada is a software engineering language. It is a high level, structured language
that incorporates modern software engineering concepts within the features of
the language. The language constructs encourage top-down program develop-

