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PREFACE

The primary goal of this book is to introduce and illustrate the major features of
a new programming language, Ada. The book is aimed at practicing computer
science and data processing professionals and students of computer science.
Ada’s many features for supporting software development and maintenance
make the language ideally suited for those involved in large scale software
projects. Although Ada builds on many concepts of Pascal and PL/1, we do not
assume that the reader has programmed in either of these languages. We as-
sume that the reader has some prior programming experience in at least one
high level language such as Fortran, Basic, or Pascal.

Relatively few Ada courses are being taught at colleges or universities
because of the current unavailability of Ada compilers. With the imminent
completion of Ada compilers, many computer science departments will begin
to offer Ada courses, since this language can be used as a vehicle for introduc-
ing advanced programming concepts (e.g., data abstraction, data hiding, con-
current processing, complex scoping, programming environments) and for
teaching software engineering. When the compilers become available, we be-
lieve that Ada should be first taught at the junior or senior level. Since many
computer science departments have introduced the elements of structured pro-
gramming and Pascal at the freshman level and have exercised these concepts
in a sophomore level data structures course, a junior or senior level Ada course
that incorporates principles of advanced programming and software engineer-
ing appears to us to be most appropriate. By the time students encounter Ada,
they should be concerned about the methodology associated with the develop-
ment of a large software project—Ada provides an ideal mechanism for teach-
ing such methodology—and not just about writing a ‘‘correct’” program. To be
able to exploit the full power of Ada, students should have some skills in
numerical analysis, data structures, and algorithm design.

Ada is a more complex language than many of the languages that are
currently enjoying heavy use such as Fortran, Basic, and Pascal. The military
language reference manual (Reference 2) and several early Ada textbooks (e.g.,
References 1, 3, 6) present the details of the Ada language in a formal way. The
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relatively few complete Ada programs that are presented in these books are
often short and sometimes trivial.

This book gives many nontrivial Ada programs to support the presentation
of new Ada constructs and concepts. Application programs are presented in the
areas of data structures, numerical analysis, and algorithm design. As we intro-
duce new Ada features, some of the programs are updated to demonstrate the
improvements in program design that the more sophisticated features support.
We hope that the reader will acquire a faster and more meaningful appreciation
of the scope and power of the Ada language by studying these Ada programs.

We employ an informal style of narrative, and we hope that the reader is
not offended by our occasional attempts at humor. By concentrating on the
major and significant language features and not getting bogged down on some of
the fine and often complex detail(s) associated with a language feature (occa-
sionally such details are omitted entirely), we hope to have enhanced the value
of this book as a learning tool. We suggest that the reader use a current lan-
guage reference manual as a supplement to this book, since we make no pre-
tense of covering ¢very fine detail of the language.

Chapters 1 through 8 present the basic control and data structures associ-
ated with Ada. The student who is experienced with Pascal or PL/1 should be
able to go quickly through this material. The student who is unfamiliar with
Pascal or PL/1 should study carefully the new concepts associated with the
control and data structure features discussed in these chapters. Chapters 9
through 16 set forth powerful and advanced features of the language that set it
apart from previous programming languages. Many of the concepts associated
with advanced programming and software engineering are supported in the
material of these later chapters, which present large Ada programs that illus-
trate the full power of Ada. We anticipate that the material of this book will
support a one semester course in Ada programming.

We acknowledge the generous support of the Microsystems Institute, a
subsidiary of the Western Digital Corporation, in helping us produce this book.
In particular, we thank Alan Boal, president of the Microsystems Institute, for
his confidence in us and his vision, without which this book would not be a
reality. We thank William Carlson, president of the Advanced Systems Division
of Western Digital, for his support. Both Western Digital and the Microsystems
Institute have provided us with valuable resources and support. Many of the
programs that appear in this book were tested using a Western Digital Supermi-
cro (TM) computer and a MicroAda (TM) compiler.

Under the sponsorship of the Microsystems Institute we have been offer-
ing a series of Ada short courses for people in government and industry. Some
of the useful suggestions that we have obtained from the students in these
courses have been incorporated in this book. We also thank Kathleen D.
Velick, of Western Digital, for her helpful suggestions and support during the
production of this book. Robert Wilson, president of Hi-Country Data Sys-
tems, provided invaluable support during the production stage.
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We are deeply grateful for the support of our families during the long and
sometimes lonely hours that we spent writing.

Richard Wiener Richard Sincovec
University of Colorado at Western Software Development
Colorado Springs P.O. Box 953
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Chapter 1

TOP-DOWN VIEW OF ADA

1.1 INTRODUCTION

Ada is a programming language that was designed to satisfy a variety of pro-
gramming requirements including the reduction in the overall cost of software
systems. It is to be used in such numerical applications as large numerical and
statistical simulation packages, and it is intended to be compatible with the
mathematical and statistical software libraries of the future. The development
of computer operating systems and compilers is also a goal that has been set for
Ada. Finally, Ada is to be used in applications with real-time and concurrent
execution requirements such as those found in the avionics system of aircraft
or in the coordination of complex embedded computer systems. The language
is considered to be a major advance in programming technology because it
.brings together the best features of earlier programming languages.

The structure of Ada is simple, yet its capabilities make it one of the most
powerful programming languages. Ada contains features that should signifi-
cantly lower the cost of software development and maintenance. These fea-
tures include the option of separate compilation of program unit specifications
and program unit bodies, software packages, generics, tasks to support embed-
ded computer systems, overloading of operators, flexible scoping and visibility
rules for data objects, subprograms, and strong typing of variables.

In this book we present the features of Ada in a systematic, easy to under-
stand manner. That is, as we introduce each new feature of the language, we
usually present a complete Ada program illustrating its use. Almost every
program in this book was executed and checked on a Western Digital Mi-
croengine computer using their Micro-Ada compiler. Often the examples con-
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2 TOP-DOWN VIEW OF ADA

sist of previous examples, reworked to demonstrate the use of a new language
construct.

Anyone with programming experience should be able to grasp the essential
details of Ada after one reading of this book. The approach we use to present
Ada is carefully tailored to those readers with programming experience in
almost any high level language. Our examples demonstrate the use of Adaona
variety of problems that arise in computer science, engineering, mathematics,
-and statistics. The programs should be easily readable, illustrating that Ada
minimizes the slope of the learning curve for becoming familiar with software
developed by others.

4.2 HISTORY AND THE PROBLEM ADDRESSED BY ADA

Ada was sponsored by the U.S. Department of Defense (DoD) in an attempt to
reduce the rapidly increasing expense of military software systems. DoD iden-
tified language proliferation as a primary cause of the software problem. Cus-
tom languages and compilers were being developed for specific applications,
but they often led to project failure because of inadequate languages and associ-
ated compiler problems. These factors prompted DoD, in 1975, to form the
High Order Language Working Group (HOLWG). The HOLWG was charged
with identifying and recommending solutions to DoD’s language problem.
Many existing languages were evaluated and found to be inadequate for the
long term, and no language was found to satisfy the requirements for a common
language. Additional studies indicated that a new language should be designed
to meet DoD’s requirements.

The language that evolved has become known as Ada. Ada is not an
acronym like most computer language names. Rather it is the first name of Ada
Lovelace, who worked with Charles Babbage on his difference machine. In
today’s terminology Ada Lovelace would probably be considered to be Bab-
bage’s programmer. That would make her the world’s first female programmer.
Some people say that Ada may be the last major high level language that will
ever be developed, since automatic program generation techniques may be
available in the not too distant future. Thus it seems fitting that the last major
programming language should be named in honor of the first female pro-
grammer.

DoD is certainly not the only organization that has experienced the rapidly
increasing cost of software systems. Many organizations have probably, on
occasion, found their software development projects behind schedule, or the
final development cost over budget, or the delivered program unreliable and/or
not satisfying the original problem specifications. Another factor that has con-
tributed significantly to increasing software cost is software maintenance. It is
not unusual for the life cycle maintenance cost to exceed the original develop-
ment cost. Anyone who has been involved in large software projects has proba-
bly experienced most of these dilemmas associated with computer software.

Other factors besides language proliferation have contributed to burgeon-
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ing software costs. Another principal factor has been the inability to manage
complexity. Structured programming, top-down program development metho-
dologies, and program development and analysis tools have been used to deal
with this problem. Studies have shown that this approach can increase produc-
tivity by as much as a factor of five when measured with respect to the de-
bugged number of instructions per day that are produced. However, correct
methodology does not force the programmer or the programming team to orga-
. nize the complexity of the problem before program development is started. The
use of high order programming languages is also advocated to reduce software
costs. But it is well known that the use of a high order language alone does not
necessarily increase productivity unless the language is properly used in con-
junction with modern programming methodologies.

The high cost of software has been accentuated by declining hardware
costs. It is not unusual for an organization to discover that software costs more
than 75% of its total computing budget consisting of computer hardware, soft-
ware development, and software maintenance. The trend seems to indicate that
eventually hardware costs will comprise only 20% of the total computing
budget, with software development and maintenance accounting for 80%.

The diversity of programming languages in common use requires that pro-
grammers become expert in several different computer languages. Thus the
employing organization must hire programmers with different language special-
ties. Often programs developed in one computer language must be translated to
other languages before they can be used on a newly acquired computer system
or transported to the computer of another organization. Software developed in
a computer language is often not portable from one computer to another or
from one compiler to another on the same computer. Some software develop-
ment tools have been developed to partially solve the portability issue. In any
case, such problems have contributed significantly to software development
and software maintenance costs.

Another fundamental problem is that as a programmer becomes fluent or
expert in one particular programming language, he or she tends to develop
software in that language regardless of whether the language is suitable for the
problem at hand. The resulting program is often difficult to verify and usually
not very readable, hence is also difficult to maintain. These factors have a
significant impact on the life cycle cost of the resulting software.

Since some languages now in common use do not support modern program
development methodologies, they also contribute to high software costs. That
is, the use of such languages tend to result in late, error-prone software that is
costly to maintain.

1.3 WHATIS ADA?

Ada is a software engineering language. It is a high level, structured language
that incorporates modern software engineering concepts within the features of
the language. The language constructs encourage top-down program develop-



