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Preface

The aim of this book is to outline the physics of image formation, electron-
specimen interactions and image interpretation in transmission clectron mic-
roscopy. The book evolved from lectures delivered at the University of
Miinster and is a revised version of the first part of my carlier book Elek-
tronenmikroskopische Untersuchungs- und Prdparationsmcthoden, omitting
the part which describes specimen-preparation methods.

In the introductory chapter, the different types of electron microscope are
compared, the various electron-specimen interactions and their applications
are summarized and the most important aspects of high-resolution, analytical
and high-voltage electron microscopy are discussed.

The optics of electron lenses is discussed in Chapter 2 in order to bring
out electron-lens properties that are important for an understanding of the
function of an electron microscope. In Chapter 3, the wave optics of elec-
trons and the phase shifts by electrostatic and magnetic fields are introduced;
Fresnel electron diffraction is treated using Huygens’ principle. The recogni-
tion that the Fraunhofer-diffraction pattern is the Fourier transtorm of the
wave amplitude behind a specimen is important because the influence of the
imaging process on the contrast transfer of spatial frequencies can be
described by introducing phase shifts and envelopes in the Fouricr plane. In
Chapter 4, the elements of an electron-optical column are described: the
electron gun, the condenser and the imaging system.

A thorough understanding of electron-specimen interactions is cssential
to explain image contrast. Chapter 5 contains the most important facts about
elastic and inelastic scattering and x-ray production. The origin of scattering
and phase contrast of non-crystalline specimens is described in Chapter 6.
High-resolution image formation using phase contrast may need to be com-
pleted by image-reconstruction methods in which the influence of partial
spatial and temporal coherence is considered. :

Chapter 7 introduces the most important laws about crystals and recip-
rocal lattices. The kinematical and dynamical theories of electron diffraction
are then developcd. Electron diffraction is the source of diffraction contrast,
which is important for the imaging of lattice structure and defects and is
treated in Chapter 8. Extensions of the capabilities of the instrument have
awakened great interest in analytical electron microscopy: x-ray microanaly-
sis, electron-energy-loss spectroscopy and electron diffraction, summarized
in Chapter 9. The final Chapter 10 contains a brief account of the various
specimen-damage processes caused by electron irradiation.



VI Preface

Electron microscopy is an interdisciplinary science with a strong physical
background. The full use of all its resources and the interpretation of the
results requires familiarity with many branches of knowledge. Physicists are
in a favoured situation because they are trained to reduce complex observa-
tions to simpler models and to use mathematics for formulating “theories”.
There is thus a need for a book that expresses the contents of these theories
in language accessible to the “normal” electron microscope user. However,
so widespread is the use of electron microscopy that there is no such person
as a normal user. Biologists will need only a simplified account of the theory
of scattering and phase contrast and of analytical methods, whereas electron
diffraction and diffraction contrast used by material scientists lose some of
their power if they are not presented on a higher mathematical level. Some
articles in recent series on electron microscopy have tried to bridge this gap
by over-simplification but this can cause raisunderstandings of just the kind
that the authors wished to avoid. In the face of this dilemma, the author
decided to write a book in his own physical language with the hope that it will
be a guide to a deeper understanding of the physical background of electron
microscopy.

A monograph by a single author has the advantage that technical terms
are used consistently and that cross-referencing is straightforward. This is
rarely the case in books consisting of review articles written by different
specialists. Conversely, the author of a monograph is likely to concentrate,
perhaps unconsciously, on some topics at the expense of others but this also
occurs in multi-author works and reviews. Not every problem can be treated
on a limited number of pages and the art of writing such a book consists of
selecting topics to omit. I apologize in advance to any readers whose favour-
ite subjects are not treated in sufficient detail. The number of electron micro-
graphs has been kept to a minimum; the numerous simple line drawings seem
better suited to the more theoretical approach adopted here.

There is a tendency for transmission electron microscopy and scanning
electron microscopy to diverge, despite their common physical background.
Electron microscopy is not divided into these categories in the present book
but because transmission and scanning electron microscopy together would
increase its size unreasonably, only the physics of the transmission electron
microscope is considered — the physics of its scanning counterpart will be
examined in a complementary volume.

A special acknowledgement is due to P. W. Hawkes for his cooperation in
revising the English text and for many helpful comments. Special thanks go
to K. Brinkmann and Mrs. R. Dingerdissen for preparing the figures and to
all colleagues who gave me permission to publish their results.

Miinster, July 1982 ' L. Reimer
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1. Introduction

1.1 Types of Electron Microscopes

Although the main concern of this book is transmission electron microscopy,
the functions and limits of the other types of electron microscopes are also
mentioned in this introductory chapter to show the advantages and disadvan-
tages of their various imaging techniques. Several types of electron micro-
scopes and analysing instruments capable of furnishing an “image” can be
distinguished. We now examine these briefly, in turn, without considering
the historical sequence in which these instruments were developed. In these
background sections, references are restricted to review articles and books.

1.1.1 Electron Microscopes for the Direct Imaging of Surfaces of Bulk
Specimens

a) Emission Electron Microscopes [1.1, 2, 10}

In an emission electron microscope (Fig. 1.1a), the cathode that emits the
electrons is directly imaged by an electrostatic immersion lens, which acceler-
ates the electrons and produces an intermediate image of the emission inten-
sity distribution at the cathode. This image can be magnified by further
electron lenses and is observed on a fluorescent screen or with an image
intensifier. The cathode (specimen) has to be plane and its surface should not
be too irregular. The electron emission can be stimulated by

a) heating the cathode (thermionic emission), which means that observation
is possible only at elevated temperatures and for a limited number of
materials; alternatively, the electron-emission temperature need not be
raised beyond 500-1000°C if a thin layer of barium is evaporated on the
surface because this lowers the work function;

b) secondary-electron excitation by particle bombardment, by irradiating the
cathode surface with an additional high-energy electron beam or an ion
beam at grazing incidence;

¢) irradiation of the cathode with an ultra-violet light source to excite photo-
electrons (photoelectron-emission microscope PhAEEM [1.3, 4])



2 1. Introduction

-U
Electrons | -U Electron gun

Specimen \7 Ay

UV quant N !

\Y .
= Immersion Condenser 555 | S
lens tens NOCH N

..U1 BSSRN | D

-Specimen £

Y Ll

R

K- Specimenp | o8] prism
A}

-U-AU
SNy | 5SS
N
VAN
Objective
leas

A |_Objective
lens

Image —
EEM REM MEM
a b c
Fig. 1.1a—c. Schematic ray paths for (a) an emission electron microscope (EEM), (b) a reflex-
ion electron microscope (REM), (¢) a mirror electron microscope (MEM) '

These instruments have a number of interesting applications but their use
is limited to particular specimens; at present, therefore, scanning electron
microscopes (Sect. 1.1.2) are the most widely used instruments for imaging
bulk specimens, especially because there is no need to limit the roughness of
the specimen surface. The final restriction is the limited number of electrons
emitted, which restricts the image intensity at high magnification, and the
resolution of the immersion lens system is only of the order of 10-30 nm. On
the credit side, surfaces can be observed directly in-situ and each of the
processes a—c) generates a specific contrast. The photoelectron-emission
electron microscope has the advantage of being applicable to nearly any flat
specimen surface, including biological specimens [1.5, 6]. The image contrast
is caused by differences of the emission intensity (material and crystal orien-
tation contrast) and by angular selection with a diaphragm that intercepts
electrons whose trajectories have been deflected by variations of the equi-
potentials near the surface caused by surface steps (topographic contrast),
surface potentials (potential contrast) or magnetic stray fields (magnetic con-
trast). '

b) Reflexion Electron Microscopes [1.7-10]

The electrons that emerge as a result of primary-electron bombardment are
either low-energy secondary electrons, which can be imaged in an emission
electron microscope (see above) or scanning electron microscope (see
below), or primary (backscattered) electrons with large energy losses, which
cannot be focused sharply by an electron lens because of chromatic aberra-



1.1 Types of Electron Microscopes 3

tion. However, imaging of the surface is possible for grazing electron inci-
dence below 10°, the “reflected” electrons being imaged with an objective
lens (Fig.1.1b). The energy-loss spectrum of the reflected electrons has a
half-width of the order of 100-200 eV. With additional energy selection by
means of an electrostatic filter lens, a resolution of 10-20 nm can be attained
[1.11]. Because the angle of incidence is so low, small surface steps can be
imaged with high contrast. The angular distribution of the reflected electrons
at single crystals is a reflexion high-energy electron diffraction (RHEED)
pattern with Bragg diffraction spots; images exhibiting crystallographic con-
trast can be found by selecting individual Bragg spots. A transmission elec-
tron microscope can be operated in this mode by tilting the electron gun and
condenser-lens system.

¢) Mirror Electron Microscopes [1.12, 13]

An electron beam is deflected by a magnetic sector field, and retarced and
reflected at a flat specimen surface, which is biased a few volts more negative
than the cathode of the electron gun (Fig. 1.1c). The reflected-electron
trajectories are influenced by irregularities of the equipotential surfaces in
front of the specimen, which can be caused by surface roughness or by
potential differences and specimen charges; magnetic stray fields likewise act
on the electron trajectories. An advantage of this method is that the electrons
do not strike the specimen; it is the only technique that permits surface
charges to be imaged undisturbed. After passing through the magnetic sector
field again, the electrons can be selected according to their angular deflec-
tion. The lateral resolution of a mirror electron microscope is of the order of
50-100 nm. Single surface steps, 5 nm in height, can produce discernible
contrast. Such a mirror electron microscope can be combined with an elec-
tron interferometer (Sect. 3.1.4), which offers the possibility of measuring
phase shifts caused by the equipotential surfaces or magnetic strav fields with
high precision. Methods of scanning mirror electron microscopy [1.14, 15]
allow a more quantitative separation of the observed image point and the
local beam deflection.

1.1.2 Instruments Using Electron Microprobes
a) Scanning Electron Microscopes (SEM) [1.16-31]

SEM is the most important electron-optical instrument for the investigation
of bulk specimens. An electron probe is produced by an one-, two- or three-
stage demagnification of the smallest cross-section of the electron beam after
acceleration. This electron probe, 5-10 nm in diameter if a thermionic elec-
tron gun is used and 0.5-2 nm with a field-emission gun, is scanned in a raster
over a region of the specimen (Fig. 1.2). The smallest diameter of the elec-
tron probe is limited by the minimum acceptable electron probe current of
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W1 Etectron gun Fig. 1.2. Schematic ray path
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107'2-10"MA. It is determined by the need to generate an adequate signal-to-
noise ratio, and by the spherical aberration of the final probe-forming lens.
The image is displayed on a cathode-ray tube (CRT) rastered in synchron-
ism. The CRT beam intensity can be modulated by any of the different
signals that result from the electron-specimen interactions.

The most important signals are produced by secondary electrons with
most probable exit energies of 2-5 eV and by backscattered electrons, with
energies that range from the energy of the primary electrons to about 50 eV.
The secondary-electron yield and the backscattering coefficient depend on
the angle of electron incidence (topographic contrast), the crystal orientation
(channelling contrast) and electrostatic and magnetic fields near the surface
(voltage and magnetic contrast). A signal can also be produced by the speci-
men current and by electron-beam-induced currents in semiconductors.
Analytical information is available from the x-ray spectrum and Auger elec-
trons or from light quanta emitted by cathodoluminescence. The crystallog-
raphic structure and orientation can be obtained from electron channelling
patterns or electron back-scattering patterns (Sect. 9.3.4) and fxom X-ray
Kossel diagrams.

The resolution of the different modes of operation and types of contrast
depends on the information volume that contributes to the signal. Secondary
electrons provide the best resolution, because the exit depth is very small, of
the order of a few nanometres. The exit volume limits the resolution of field-
emission systems with electron-probe diameters smaller than 2 nm. The
information depth of backscattered electrons is much greater, of the order of
half the electron range, which is as much as 0.1-1 um, depending on the
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density of the specimen and the electron energy. The secondary-electron
signal also contains a large contribution from the backscattered electrons
when these penetrate the surface layer. This is why SEMs mostly operate in
the range E = 10 ~ 20 keV. At higher energies, the electron range and the
diameter of the electron-diffusion region are greater. Conversely, higher
energies are of interest for x-ray microanalysis if the K shells of heavy ele-
ments are to be excited. Decreasing the electron energy has the advantage
that information can be extracted from a volume nearer to the surface, but
the diameter of the electron probe increases owing to the decrease of gun
brightness.

Unlike transmission electron microscopy, special specimen-preparation
techniques are rarely needed in scanning electron microscopy. Nevertheless.
charging effects have to be avoided, by coating the specimen with -a thin
conductive film for example and organic specimens have to be protected
from surface distortions by fixation or cryo-techniques.

b) X-ray and Auger-Electron Microanalysers [1.23-28]

By using a wavelength-dispersive x-ray spectereter (Bragg reflection at a
crystal), we can work with high x-ray excitation rates and electron-probe
currents of the order of 107°-1077 A, though the electron-probe diameter is
then larger, about 0.1-1 ym. The main task of an x-ray microanalyser is to
analyse the elemental compositions of flat, polished surfaces at normal elec-
tron incidence with a high analytical sensitivity. The ray diagram of such an
instrument is similar to that of a SEM but two or three crystal spectrometers,
which can simultaneously record different characteristic x-ray wavelengths,
are attached to the column. The surface can be imaged by one of the SEM
modes to select the specimen points to be analysed. ’ '

SEM or x-ray microanalyser can be equipped with an Auger-electron
spectrometer, of the cylindrical mirror type for example. It is then necessary
to work with ultra-high vactum in the specimen chamber because Auger
electrons are extremely sensitive to the state of the surface: a few atomic
layers are sufficient to halt them. Special Auger-electron microanalysers
have therefore been developed, in which the 1-10 keV electron gun may for
example be incorporated in the inner cylinder of a spectrometer. This type of
instrument can also work in the scanning mode so that an image of the
surface can be formed with secondary electrons or an element-distribution
map can be generated using Auger electrons.

1.1.3 Transmission Electron Microscopes
a) Conventional Transmission Electron Microscope [1.32-96]

In a conventional transmission electron microscope (CTEM. or TEM for
short) (Figs. 1.3 and 4.17 ¢, 20), a thin specimen is irradiated with an electron
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Fig. 1.3. Schematic ray path for a transmission
electron microscope (TEM) equipped for addi-
tional x-ray and electron energy-loss spectros-
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beam of uniform current density; the electron energy is in the range
60-150 keV (usually 100 keV) or 200 keV-3 MeV in the case of the high-
voltage electron microscope (HVEM).

Electrons are emitted in the electron gun (Sect. 4.1) by thermhionic emis-
sion from tungsten hairpin cathodes or LaB, rods or by field emission from
pointed tungsten filaments. The latter are used when high gun brightness is
needed. A two-stage condenser-lens system permits variation of the illumina-
tion aperture and the area of the specimen illuminated (Sec. 4.2). The elec-
tron-intensity distribution behind the specimen is imaged with a three- or
four-stage lens system, onto a fluorescent screen (Sect. 4.4). The image can
be recorded by direct exposure of a photographic emuision inside the vacuum
(Sect. 4.6).

The lens aberrations of the objective lens are so great that it is necessary
to work with very small objective apertures, of the order of 10-25 mrad, to
achieve resolution of the order of 0.2-0.5 nm. Bright-field contrast is pro-
duced either by absorption of the electrons scattered through angles larger
than the objective aperture (scattering contrast) or by interference between
the scattered wave and the incident wave at the image point (phase contrast).
The phase of the electron waves behind the specimen is modified by the wave



