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Preface

Many of the problems facing physicists, engineers, and applied mathematicians
involve difficulties such as nonlinear governing equations, nonlinear boundary
conditions at complex known or unknown boundaries, and variable coefficients
that preclude exact solutions. Consequently, solutions are approximated using
numerical techniques, analytic techniques, and combinations of both. For
given initial and boundary conditions and specified parameters, one can use
.~odern computers to integrate linear and nonlinear differential equations
fa‘rly accurately. However, if one needs to obtain some insight into the
character of the solutions of nonlinear problems and their dependence on
certain parameters, one may need to repeat the calculations for many different
values of the parameters and initial conditions. Even for simple nonlinear
problems the output may be so large that it is difficult to recognize even simple
general phenomena. On the other hand, analytic methods often easily delineate
general phenomena, yielding useful results in closed form. In the case of
nonlinear partial differential equations with variable coefficients and com-
plicated boundaries, the combination of an analytic and a numerical method
often provides an optimum procedure. The linear problem is solved using the
numerical method and the Ritz-Galerkin procedure can be used to reduce the
problem to solving an infinite number of coupled nonlinear ordinary differen-
tial equations, which are solved using the analytic method.

Often one is interested in a situation in which one or more of the parameters
become either very large or very small. Typically these are difficult situations to
treat by straightforward numerical procedures. In these situations, analytic
methods can often provide an accurate approximation and even suggest a way
to improve the numerical procedure.

Foremost among the analytic techniques are the systematic methods of
perturbation (asymptotic expansions) in terms of a small or a large parameter
or coordinate. The book Perturbation Methods presents in a unified way an
account of most of the perturbation techniques devised by physicists, en-
gineers, and applied mathematicians, pointing out their similarities, differences,
advantages, and limitations. However, the material is concise and advanced
and, therefore, is intended for researchers and advanced graduate students. In
Introduction to Perturbation Techniques the material is presented in an elemen-
tary way, making it easily accessible to advanced undergraduates and first-year
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viii : PREFACE

graduate students in a wide variety of scientific and engineering fields. In Hoth
books the material is presented using examples; the second volume contains
more than 360 problems.

Problems in Perturbation contains detailed solutions of all the problems in
Introduction to Perturbation Techniques and about an equal number of un-
solved supplementary problems. Each chapter begins with a short introduction
that gives a summary of the definitions, basic theory, and available methods.
The material is self-contained for the reader who has a background in calculus
and elementary ordinary-differential equations. Although the solved problems
are the exercises in Introduction to Pertubation Techniques, the material is
general and could be used to accompany any of the existing books on
perturbations, as well as those on nonlinear oscillations and applied mathe-
matics that include asymptotics and perturbations. Since perturbation tech-
niques are best explained using examples, this book is ideal for self-study.

ALI HASAN NAYFEH

Blacksburg, Virginia
March 1985
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CHAPTER 1

Introduction

Most of the physical problems facing physicists, engineers, and applied
mathematicians today exhibit certain essential features that preclude exact
analytical solutions. These features include nonlinear governing equations,
nonlinear boundary conditions at known or, in some cases, unknown
boundaries, variable coefficients, and complex boundary shapes. Hence physi-
cists, engineers, and applied mathematicians are forced to determine ap-
proximate solutions of the problems they are facing. The approximations may
be purely numerical, purely analytical, or a combination of numerical and
analytical techniques. In this book we concentrate on analytical techniques,
which, when combined with a numerical method, yield very powerful and
versatile techniques.

The analytical approximations can be broadly divided into rational and
irrational. An irrational approximation is usually obtained by an ad hoc,
mathematical-modeling process that involves keeping certain elements, neglect-
ing some, and approximating yet others. Thus it represents a dead end, because
the resulting accuracy cannot be improved by successive approximations. A
rational approximation represents a systematic expansion, called asymptotic or
perturbation, that can in principle be continued indefinitely. ‘

1.1. Parameter Perturbations

The key to solving modern problems is mathematical modeling that involves
deriving the governing equations and boundary and initial conditions. Then
the mathematical problem should always be expressed in nondimensional or
dimensionless variables before any approximations are attempted.

If the physical problem involving the dimensionless scalar or vector variable
u(x,e) can be represented mathematically by the differential equation
L(y, x,¢)=0 and the boundary condition B{x, e)=0, where x is a scalar or
vector-independent dimensionless variable and e is a dimensionless parameter,”
it cannot, in general, be solved exactly. However, if there exists an e= ¢, (e can
be scaled so that e =0) for which the problem given can be solved exactly,
more readily, or numerically, one seeks to approximate the solution u(x, e) for
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2 s INTRODUCTION

small values of ¢, say in an expansion in powers of ¢ in the form
u(x, €) = ug(x)+euy (x)+ 2uy(x)+ - - -

where the u,(x) are independent of ¢ and uo(x) is the solution of the problem
when &= 0. Such expansions are called parameter perturbations.

1.2. Coordinate Pertuwrbations

If the physical problem is represented mathematically by the differential
“equation L(u, x) =0 and the boundary condition B(x) =0, and if u(x) takes
a known form u, as x —x, (x, can be scaled to either 0 or o), in a
coordinate perturbation, one determines the deviation of u from uq for x near
xp in terms of powers of x for x, =0, or in terms of powers of x ! for X =o00.
Examples of coordinate perturbations are

=]
u=x°Y a,x"
n=l

0
— o -n
u=x°)Y a,x
n=1

oC
u=e *x°Y a,x"
n=1

13. Gaugé Functios

In both parameter and coordinate perturbations, one is interested in the
behavior of functions such as f(e) as the dimensionless parameter or coordi-
nate ¢ tends to a specific value ¢, (e can always be normalized so that g, =0).
One way of classifying the function f(e) is based on its limit as e — O; if this
limit exists, there are three possibilities:

f(e)—0 :
fe)>A4) ase—>0,0<A<o0

f(e) s oo

The classification given above based on the limit is not very useful because
there are an infinite number of functions that tend to zero or infinity as £ 0.
Therefore, to narrow down this classification, we subdivide the first and third
classes according to the rate at which they tend to zero or infinity. To
accomplish this, we compare the rate at which these functions tend to zero and
infinity with the rate at which a set of gauge functions tends to zero and



ASYMPTOTIC SERIES 3

infinity. These gauge functions are so familiar that their limiting behavior is
known intuitively. The simplest possible examples of gauge functions are the
powers of &.

1.4. Order Symbols
If

(¢)
g(e)

~

lim 2t =4

where 0 < 4 < 00, we write

f(e)=0[g(e)] ase—0

and say that f(e) is order g(¢) as e— 0 or f(¢) is big “o ” of g(e) as £~ 0.
If

f(¢)
eh-?}) gje) =0

we write
f(e)=o[g(e)] ase—0
and say that f(e) is little “oh” of g(e) as e— 0.

1.5. Asymptotic Series

Given a series £2_y(a, /x"), where the a, are independent of x, we say that
the series is an asymptotic series and write

f(x)~ T % asixl—oo

n-O
if and only if
f= % & (—1;) as |x| 0
n-Ox lxl : 7

which is equivalent to

f)= T Sro( 5] miximoo

n—O



4 INTRODUCTION
1.6. Asymptotic Sequences and Expansions

A sequence of functions §,(e) is called an asymptotic sequence as ¢ — 0 if
8,(e)=0[8, ,(e)] ase—0

Given an expansion %_,a,5,(¢), where the a, are independent of ¢ and
8,(¢) is an asymptotic sequence, we say that this is an asymptotic expansion
and write

o0

/&)~ L ap,(e) ase—0

n=0
if and only if
N
fle)= ¥ a,8,(e)+0[8y(e)] ase—0
n=0
which is equivalent to
N-1
f(e)= X a,8,(e)+0[8y(c)] ase—0
n=9

Clearly, an asymptotic series is a special case of an asymptotic expansion.

L.7. Convergent Versus Asymptotic Series

Let a function f(x) be represented by the first N terms of a series in inverse
powers of x plus a remainder R (x) as

N a
(ORD VR WE)

where the a, are independent of x. This series converges if and only if

lim Ry(x)=0
N-oowo
x fixed

This series is an asyraptotic series as |x| = oo if and only if
Ry(x)=0(x]"") as|x|-o0

Clearly, a convergent series is an asymptotic series; however, an asymptotic
series need not converge.



SOLVED EXERCISES
1.8. Nonuniform Expansions

An asymptotic expansion of more than one variable, such as

(2.0~ T a,()8,(e) ase—0
n=0
is uniform if and only if
N .
f(x,e)= X a,(x)8,(e)+Ry(x,e) ase—0
n=0

where R y(x, €) = of6y(¢e)] as e~ 0 for all x in the domain of interest.
Solved Exercises

1.1. For small ¢ determine three terms in the expansions of
(a) (1-3a%e+fka*e?) ' =1+(3a%e— ska*e®)+(3a%e — sk ae?)?
+ - =1+4a’e—fka'e? + Fa'e’ + - =1+}ale—Ha'd + - -
®) cos(;/l—et)-cos[(l—iew %);'_* e + )]
= cos[(1 — }et — §e’?)+ -+ -]
= cosl—sinl(—der —3e22)— Lcosl(— et —4ee?)? + - -+
=cos1+(der +}e*r?)sinl — }e?rPcosl+ - - -
=cos1+}ersinl +}e?t?(sinl—cosl)+ - -
© Y1-te+26 =[1-(he—2e2)]/2 =1-}(he—2¢?)
+%(§e—2ez)2+ cooml—letel—het+ - ml-de+HPe?+ -
(d) sin(l + e — €)= sin1 +(2— e*)cos1 — (e — ?)sinl + - - -
= sinl+(e— &*)cos1 —de?sinl+ - - -
= sinl+ ecosl— ¢2(cos1+4sinl)+ - - -
1.2. Expand each of the following expressions for small ¢ and keep three terms:

(@) y1-4e2r—te*t = [1-(de?t +}e*n))?

=1-}(et+}en)+ %xz,_% Ger+ietn)’ + ---
—1—}ezt—f;v‘t—3‘i;‘12.+ oo ml-de?t—Lett(L+30)+ - -

(b) (1+ecosf) ' ml—ecosf+ e’cos’f+ -+

© (1+ ew, + 2w,) T =1—2ew, + e?w,)+ -—"—2—;7_—3(3”, +g2w,)% + - -
=1—2ew, + e2(—2w, +3wi)+ - -+ )

(d) sin(s + ew;s + e%w,5) = sin s + (ew; S + 2w, 5)C0s 5 ~ H (w5 + %, 5)?sin s
+ .- msins +20,5c08 5 + e2s{w,c08 s —$wissins)+ - - -
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© sin"( - )-sin-‘{e(1+e)“”1
€

2!
= (e~ i) he 1 +ie) +
=e—if+3e+3e8+ =~ + el 4 -
1+2e—¢* 2
() =25 = In(1 +2¢ — &)~ }In(1 + 2¢)
C o ¥142e
=-25-—ez—%(28-32)2+§(2£—e2)3
—32e-1Qe)* +1Q2e)° + - I =fe—12 + P + - :
13. Let p=po+ep + ey, in h=1[1*‘/1 3r(1-p) ] expand for small e, and
keep three terms.

Using a Taylor series expansion, we have

-sin"[e l—§e+——————ix_%ez)+ ---]=sm“(e—1 £+ -0)

’ g 7, 2
h(l‘o"’el‘l +92F2)"h(l‘o)+h (l‘o)(eﬁ‘l'*'ez#z)""z%h (y.o)(ey.l+e2n2) + - e
But

W(w) =~ 3 -H[1-3p(1- )] 2 x(=3+6)
-3(1-2p)[1-3p(1- )]
W) = = 311=3(1-0)] 2= x3(1=20)[1- (1 - p)] " x(~3+ 6p)
== 3[1-3p(1-p)] "+ F(1-2p)[1-3p(1- p)} ¥
Therefore, "
h=3[1- T30 (T= o) | +3(1-20)[1 340 (1~ o)) " mye
+e2{3(1-210)[1- 380 (1 8o)] " *p,
—3[1-3p0(1— 8o)] '} + B(1-28,)°
X[1-3po(1- o) ?ud} + -

14, For small e, determine the order of the functions, sinh(l/¢), In(l+sine),
In(2 +sin e), and e"f(“".

Since as ¢ — 0,

el/z - e-l/z

.. 1
Sll‘lh:‘ )

~§e1/'

sinh% =0(e’*) ase—0



SOLVED EXERCISES

Since as e — 0,
1n(1+sine),~1n(1+a);s' ‘
In(1+sine) =0(e) ase—0
Since as e;O,
In(2+sine) = In(2+¢) = In2+1In(1+4e) = In2+ L
In(2 +sin &) = O(1) as e 0
Since as ¢ — 0,
M- xetm]—¢
enl-9=0(1) ase—0

1.5. Determine the order of the following expressions as e — 0:

(a) Sinceye(1-¢) =ve
Ve(1—¢) =0(¢7%)

(b) 4n%e=0(e)
(¢) 1000€ /% = O(&/?)
(d) Since In(1+¢)=¢
In(1+¢) = 0(e)

l-cose 1-1+14¢

(e) Since T+ cose = Tr1-12 = 1g?
et o)
(f) Since 1_3::" = 1—513:2%e2 =g /2
l—eZ:ss =0(e7?)

() Let sech™'e=u so that sech u = ¢ and cosh u =1/e. Hence

e"+e“‘-=-z
e

As ¢—> 0, u— oo and hence

e"s—z- or u==ln2+lnl
€ €
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Therefore,
sech™le= O(ln%)
(h) Since et = e =1
et = 0(1)

In(1+2e)

e(1-2¢) ln(1+ 26)-1113

ln[l + In(1+2e) | 0(1)

(i) Since ln[l +

e(1-2e)
1n[(11+_ 22ee)/e1 ] . ,n[H l-;(llﬁl] o1l

h[l ln[(1+2e)/el o[,u(m ]

() Since In|1+

(k) Since e~ h0/9) = exp( - iexp%)

e~ /0= 0 [exp( - &exp%)]'
(1) Since ffe “ds= [§(1—s’)ds=e

jo'e-” ds = 0(e)

1.6. Determine the order of the following expressions as ¢ — 0:

(a) Since In(1 +5e) = Se

In(1+5¢) = O(e)
(b) Since sin™! £ wsin"leme
Yl+e
sin”' —£— =0
Vi+e ()
(¢) Since ——- e ~[€— e 2
sine e
ﬁ -1/2
sin e S C

(d) Since 1—4¢? —cose~1—}e? —(1—he* + de*) = —de'

1-}e? —cose=0(e)
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—e!

. .. 1 el’t /e La/e o L
(e Smceln(smh;)zln —3 = (3e )=;

st ol

17. Determine the order of the following as ¢ —~ 0:

(a) Since In(cot ) = ln( :’: z) =In| 7

In(cot ) = o(m%)

Me— eV

(b) Since sinh-ij = 5 =iel/*

sinh% =0(/?)

cosh(1/e) _ /" + e /e

R 1
© Smf:e coth( e) sinh(1/e) e/t —eV/* -

coth(%) -0(1)
g &/ &4 s
(d) Since T = —(1-19) = 12 2e
e —5/4
1—cose O(e )

+ 1
(e) Since 1n[l+ln1 52‘] ~ln[l+]n%] = ln(ln:)
+
o[t +1022¢] < o[1a1n? )
€ €
1.8. Arrange the following in descending order for small &:
e, ¢, ln(lnl), 1, e‘/zlnl, eh‘nl , e"/',lnl, 272 ¢, ezlnl
€ € € € €
Answer:
Aln% > ln(ln%) >1> e‘/zln% > /2> eln—t‘ >e> /%> ezln% >t >e /"
1.9. Arrange the following in descending order for small &:
e, ln% , e %% cote, and sinh%
Answer:

et _ 1 _
sinh— > cote> ¢ °‘°‘>1n;>e 17e
-4



