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Preface

Holography, pattern recognition, and optical information processing are
fields of increasing importance to engineers and scientists. Many are
learning through self education, and this book should prove useful to them.
The book evolved, however, from notes used in a one-semester class on
optical information processing and holography for first-year graduate
students in engineering and physics and for well-prepared undergraduates.
The course was taught at the Boulder campus of the University of
Colorado to primarily younger, full-time students and at the Denver
campus to older, part-time students who may have had experience in the
field. The necessity of providing a text for such a variety -of students has
resulted in a book that is larger than anticipated, but contains both basic
discussions and detailed descriptions of applications.

The book deals mainly with information conveyed by spatial rather than
temporal modulation. The discussion of spatial information processing
draws from two areas—information or communication theory and
electromagnetic theory. Many of the concepts are borrowed from com-
munication theory, and the existence of information on a wavefront of

-necessity introduces the problems of propagation and diffraction.

The discussion of spatial information carried on a wavefront and of the
means of recording and recovering the information is the basis of
holography and spatial filtering. In Chapter 1 scalar diffraction theory is
applied to moving fields, emphasizing the propagation of an angular
spectrum of plane waves. Chapter 2 introduces the mathematical tools to
be used in the processing of spatial information—two-dimensional trans-
forms, convolution, and sampling. Chapter 3 goes into the details of
wavefront recording, reconstruction, and modulation. The concept of
coherence is introduced in Chapter 4. The degree of coherence required in
holography and information processing is discussed, and the coherence
properties of many radiating sources are described. In ‘Chapter 5 the
imaging and Fourier-transforming properties of a lens are derived from the
diffraction formulas.
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viii PREFACE

The general properties of some detectors, recorders, and spatial mod-
ulators are presented in Chapter 6. The detection mechanisms and the
effects of nonlinearities and finite resolution of recording materials are
Jdiscussed as they apply to wavefront recording, reconstruction, and modu-
laton, ) .

In communication theory, several useful concepts and techniques have
been developed in conjunction with the detection and processing of
temporal information. Almost all of these concepts apply with little mod-
ification to the detection and processing of spatial information. Detection
theory is applied to detection of spatial signals (pattern recognition);
spectral analysis and filtering theory are used to analyze and modify the
spatial frequency distribution of a spatial signal; and, perhaps the most
significant of all, transfer functions are found for the elements operating
on the spatial information, enabling us to use the “black box™ approach to
describe many of the operations.

Chapter 7 discusses spatial filtering and pattern recognition. The first
general area covered is that of straightforward spatial filtering by altering
the amphtude and phase of the¢ spatial spectrum with separate transparen-
cies. The more powerful technique of complex filtering, made practical by
the use of wavefront recording to form a filter, is shown to be useful in
pattern recognition. Many of the problems encountered in pattern recogni-
tion are discussed in detail. ‘

An analysis of imaging systems appears in Chapter 8. The concept of an
angular spectrum of plane waves 1s used to determine the transfer function
of an imaging system in terms of spatial frequencies, and the linear system
approach to imaging is discussed. ,

Chapter 9 deals with holography in general and with types of holograms.
The concepts of wavefront recording and reconstruction are examined in
Chapter 3, but a more complete description of the holographic process is
given in Chapter 9. The topics of magnification and the associated aberra-
tions are covered and some techniques for making holograms with in-
coherent illumination’are presented. An important section of this chapter
deals with the effect of the recording medium on the quality of a recon-
structed image. Other hologram-generating techniques, such as the com-
puter, are also treated in Chapter 9. Computer generation of spatial
modulators is also important in spatial filtering, but because much of the
work in this field has been in relation to holography, the subject is placed
in Chapter 9.

Applicatjons of holography are dealt with in Chapter 10. This includes
holographic interferometry and pulsed laser holography. The application
of the concept of holography to wavelengths other than optical ones is
discussed and the advantage of using the concept of holography in other
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fields 1s pointed out. For example, reconstruction of an image through a
phase-distorting medium is an interesting way to describe the operation of
adaptive antenna arrays. The vast amount of information that can be
stored on a hologram has led to the use of holograms as memory elements
in such applications as computer memory and data storage. The techniques
used in these applications are discussed briefly. One of the most tantalizing
applications is the production of three-dimensional television. Some of the
difficulties and some of the proposed solutions are discussed in the last
section.

The topics are presented in a logical sequence. No effort was made to
preserve the historical order of the developments, but extensive references
are given to assist the student in finding background material. The list is
not all inclusive, however, and omission of any reference is not intended to
reflect on the value of that work. The problem sets are intended to further
illustrate the concepts presented in the respective chapters. Hopefully,
some of the problems will also encourage reading of the original literature.

One comment concerning notation is in order. The form e 7«72,
where y is the propagation constant, is used to represent a wave traveling
in the positive z direction. This notation is generally encountered in
diffraction theory and in books on optics. The time variable will usually be
dropped, leaving e to represent the wave traveling in a positive direction
rather than e ™/ as seen in some engineering texts. To reconcile the
formulas, i is to be replaced by — .

I acknowledge the helpful suggestions of my students, the extensive

.comments of Helmut Lotsch, who carefully read the entire manuscript,
and- the patience of Judy Price who typed most of the manuscript.

W. THovas CaTHEY |

‘Denver, Colorado
May 1973
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1

Wavefront Propagation

and Scalar Diffraction

In introducing scalar diffraction theory, the phenomenogical arguments of
Huygens are given to provide an intuitive understanding of the concepts
involved. However, the mathematical relations describing scalar diffraction
are derived by the use of an ensemble of plane waves which can be
considered as being equivalent to the actual wave distribution. The result-
ing equation is examined for possible simplifications through approxima-
tions, leading to a definition of the Fresnel and Fraunhofer diffraction
regions. The final section introduces the concept of a transfer function
description of diffraction.

1.1 Introduction to Scalar Diffraction

To exactly describe the diffraction of a wave by an aperture, the polariza-
tion of the wave must be known. That is, the vector representation of the
wave must be used [1-1]. However, the vectorial representation of the wave
is neglected in this chapter because (1) the mathematical development is
more complicated and (2) the scalar theory gives acceptable results for the
cases that we consider. In general, the scalar theory is acceptable if the
detail of the diffracting structure and the distance between the aperture
and the plane in which the field is to be determired are large with respect
to a wavelength. Two examples in which these approximations do not hold
are-microwave diffraction by small apertures and optical diffraction by a
closely spaced grating [1-2]. :

An expression relating the wave in one plane to the wave in another can
be derived using Green’s theorem. A summary of this procedure is given
by Goodman [1-3]. We shall use a different approach for arriving at the

5504796




2 WAVEFRONT PROPAGATION AND SCALAR DIFFRACTION

diffraction formula which involves following, from one plane to the next,
the angular spectral components of the wavefront. That is, the distribution
in one plane is written in terms of an ensemble of plane waves which, when
added. in both amplitude and phase, are equivalent to the distribution. The
plane waves are allowed to propagate to another reference plane and are
added to find the new distribution in the second reference plane. This
approach is similar to that of Ratcliffe [1-4). Before attacking the diffrac-
tion problem, let us consider the description of a propagating plane wave.

Propagation of plane waves. A uniform plane wave traveling in an ar-
bitrary direction can be represented by

[U|Reexp [ — i(wt— ax— By —yz+¢)] (1-1)

where |U| represents the magnitude of the wave, ¢ denotes the phase, and
Re denotes real part. We will normally allow a complex U to include both
amplitude and phase. The power density of the wave is given by UU*.
The variabi» U therefore represents neither the electric nor the magnetic
field but could be associated with either, depending on the definition of U.
That is, U=E/Vn or U= Vn H where 7 is the intrinsic impedance of the
medium, E represents the electric field, and H represents the magnetic
field. In our scalar work. a choice need not be made. The intensity of a
wave is a measure of the energy per unit time per unit area normal to the
direction of propagation. The variables a. 8. and y determine the direction
in which the wave propagates. and are restricted by

C o2y
e prey=ki= () (1-2)

where A i1s the wavelength. The values of a. 8. and y are related to the
direction of propagation: that is

a=kcosd, (1-3)
B=kcosé, (1-4)
y=kcosx (1-5)

where 8. ¢, and x, are respectively, the angles between the x. y, and z axes
and the direc.iy.. of propagation (normal to the wave). Note that the
dimensions of a, 8, and y must be radians per unit length.

In writing a .i=scription of a propagating wave, we shall normally omit
the temporal va.iabie and the propagation constant for the z direction. The
temporal variation 1s un lerstood and the value of y can be found from
{1-2). The expression (1-1) can then be written as

Uexp {i2n[ux+uvy]} (1-6)



INTRODUCTION TO SCALAR DIFFRACTION 3

where « and v are spatial frequencies having the dimensions of cycles per
unit length:
cosé
o CcOs B s . ( 1-7)

Figure 1-1 illustrates the parameters discussed for a plane wave propagat-
ing in the x and z directions. The solid lines are maxima and the dotted
lines are minima of the tilted wave. Along the x axis the distance between
maxima is given by A/cosé. That is, the spatial period in the x direction is
A/cos@, and the spatial frequency is given by (1-7). A wave propagating
partially in the negative x direction, such that the spatial period is again
A /cos@, has the same magnitude spatial frequency, but the phase regresses
(cos@)A cycles per unit length rather than advancing by the same amount.
This could be considered as a negative progression of spatial phase. Notice,
however, that the real part of (1-6) is the same in either case. When two
waves represented by Uexp(i27ux) and Uexp(—i2wux) are combined, the
resulting amplitude distribution along the x axis is 2Ucos(27ux), giving a
fringe distribution having a spatial frequency of u cycles per unit length.
Consequently, we see an intensity pattern described by 4U? cos*(2mux).

-

Figwe 1-1 A plane wave propagating in the positive x and z directions.




4 WAVEFRONT PROPAGATION AND SCALAR DIFFRACTION

Angular spectrum of plane waves. Let us temporarily leave the discussion
of the propagation of a plane wave and consider the Fourier transform
representation*

cosd cosé ‘ [ x,c088 y cost
A.(T,T)=fol(xpyl)exp —1277( T ')\ ) dx,dy,

(18)
and the inverse transform
§ cosé ) x cosf y cosé
U,(x,y)=ffA,(%—‘, X )exp :277( ])\ + l)\' )
X d( cosé )d( cost ) (19)
A A

where U,(x,,y,) represents the wave distribution in the x, ~y, plane and
A [(cosf)/A,(cos§)/A] is the Fourier transform of U,. We have seen that

8
Jc]():\os +y,(;\os£) =exp|i2m(ux,+vy,)] (1-10)

exp i27r(

represents a plane wave propagating partially in the x and y directions (the
iwt and iyz terms are dropped). Consequently, (1-9) says that the
distribution U, can be considered as being made up of plane waves
propagating in directions determined by cosé and cos¢ and having ampli-
tudes and phases as described by A,. We can therefore say that A
describes an angular spectrum of plane waves, just as the Fourier trans-
form of a temporal distribution yields the frequency spectrum of the
distribution. The integral of (1-9) extends from minus infinity to positive
infinity. The only plane waves that are of interest to us are those having
arguments of A, from —1/A to 1/A. Values of the argument outside these
limits require that |cos|>1; that is, the angle is imaginary. Waves having
such arguments are called evanescent or inhomogeneous waves. Their direc-
tions of propagation are along the positive or negative x axis and decay

*We could have used the Fourier transform pair A (cos8,cos§) and U,(x,/Ay,/A). That is,
the coordinates of the distribution U, could have been normalized with respect to the
wavelength.
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exponentially in the z direction. Investigation of (1-8) shows that these
evanescent waves occur only when U has spatial frequency components
with periods of less than a wavelength. Even when they occur, they decay
rapidly with z so that they contribute to the field only very near the
diffracting structure. In most of our work, we shall neglect the effects of
evanescent waves. .

The propagation of a homogenous plane wave is easy to describe—it
remains an infinite, uniform plane wave if the medium is homogenous and
isotropic. Only the phase changes. Consequently, we can describe a distri-
bution U, in plane x, —y, in terms of its angular spectrum of plane waves
A,, and allow the plane wave componenis to propagate to plane x,—y,
giving us A, from which Uy(x,,y,) can be found. Figure 1-2 shows the
propagation of one of the plane wave components. For simplicity, only the
x and z axes are shown. As can be seen from the figure, the tilted waves
(not propagating just in the z direction) travel a shorter distance than the
nontilted wave. The nontilted wave travels a distance z giving a phase shift
of exp(ikz). In general, the plane wave components travel a distance g
giving the phase shift

exp(ikq) = exp(ikzcosx). (1-11)
Because
cos’x +cos’f+cos’E=1, (1-12)

exp(ikq) =exp(ikz\/l —cos?f — cos’¢ ) (1-13)

Figure 1-Z Propagation of one plane wave component,




