Industrial and business
forecasting methods

A practical guide to exponential smoothing and

curve fitting

COLIN D LEWIS



Industrial and business
forecasting methods

A practical guide to exponential smoothing and curve fitting

COLIN D LEWIS

Professor of Operations Management
University of Aston

Butterworth Scientific
London Boston Sydney Wellington Durban Toronto



All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means, including photocopying and recording, without
the written permission of the copyright holder, application for which should be
addressed to the Puplishers. Such written permission must also be obtained
before any part of this publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of Net Books and
may not be resold in the UK below the net price given by the Publishers in their
current price list.

First published 1982

© Butterworth & Co (Publishers) Ltd, 1982

British Library Cataloguing in Publication Data

Lewis, C.D.
Industrial and business forecasting
methods.
1. Forecasting
I. Title
003 (CB158

ISBN 0-408-00559-9

Typeset by Scribe Design, Gillingham, Kent
Printed in England by The Camelot Press Ltd., Southampton



Preface

This book is aimed quite simply at those who possess time-series data
which they wish to-forecast.

Forecasts are interpreted as being the result of extrapolating the past
into the future. It is assumed that forecasts are derived from an
objective series of calculations or computations involving data, whereas
subjective estimates of future values are termed ‘predictions’. Forecasts
are, therefore, unbiased estimates of future data values. As such they
can and should be modified if subjective predictions confidently
indicate that an unbiased estimate is unlikely to be an effective estimate
of what will occur. For example, given that it is known that a major
customer is going to suffer a strike next month, it is obviously quite
pointless to assume that a forecast based on the last nine months of
that customer’s demand is likely to be at all accurate.

Since the early sixties, the proportion of industrial and business
organizations using forecasting techniques has increased steadily, such
that in 1977" it was established that forecasting techniques were used
by 88% of the 500 largest industrial companies in the USA. Moreover,
it was also established that no other single family of techniques was
used as much as forecasting. )

Along with the growth of the use of forecasting techniques, there
has been a parallel growth in the variety of forecasting models on offer
from the theorists. In spite of this increasingly Wide range of available
forecasting models, it has also become apparent that the choice of
forecasting model actually used follow a typical Pareto relationship,
such that 20% of the models available are used.in 80% of practical
forecasting applications and the remaining 80% of models are used in
only 20% of applications. It is with the former which this book is
exclusively concerned.

The two principal forecasting model types (and their derivatives)
which feature in the vast majority of forecasting applications are
exponential smoothing and regression (including curve fitting). The
main reasons for the undoubted popularity of these methods are:

(i) their relative simplicity;

(ii) their economy in computational and storage terms;



(iii) the fact they are automatic, in model identification terms,
such that forecasts can be produced without subjective inter-
vention;

(iv) they have been extensively used for over twenty years.

The first section of this book deals with exponential smoothing
methods which are generally recognized as falling into the shors-term
forecasting area. These forecasting techniques are associated mainly
with data based on a time period of less than one year, i.e. demand per
month, sales per quarter, etc.

The second section of the book deals with regression and curve
fitting methods which are generally recognized as falling into the
medium-term forecasting area and, although more usually associated
with yearly-based data, can often be used for data based on shorter
time periods if no seasonality is present.

As, in practice, most forecasting is done using a computer (or
programmable calculator) the text of this book is supported by flow
diagrams and worked tables to assist the reader in programming and
debugging forecasting programs designed to suit his or her own
situations.

C.D. Lewis
Solihull

1. LEDBE'ITER, W.N. and COX, L.F. (1977) ‘Operations research in production
management: an investigation of past and present utilization’, Production
and Inventory Management, 18, 84
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Section 1

Short-term forecasting (exponential
smoothing methods)



Introduction

Short-term forecasting is generally concerned with:

(i) data associated with a time period of less than one year (i.e.
calendar months, accounting periods in a year — usually 12 or 13,
quarters, weeks, etc.);

(ii) situations where forecasts are associated with a particular item
and for which forecasts are updated every time period;

(iii) situations where forecasts are required for a large number of
items;

(iv) situations where the forecasts produced for a particular item or
product and are used on a period to period basis to: (a) analyse demand
and to assess appropriate inventory levels and production schedules,
and (b) analyse sales to help assess cash flows and to ascertain
marketing procedures.

It is apparent that for these types of application the most appro-
priate forecasting model (or series of models) needs to be:

(i) cheap to operate — in terms of implementation, routine up-
dating and storage requirement costs;
> (i) flexible and hence able to offer a variety of different, but
closely related, model types suitable for a wide variety of items and

_ situations for which forecasts could be required;

“(iif) largely automatic, such that a minimum of manual interruption
is necessary; .

(iv) well proven, and hence, readily available in both the ljterature
and computer software.

The range of forecasting models based on the exponentially
weighted average (collectively referred to as exponential smoothing
methods), which were introduced in the early 1960’s, has been shown
to fulfil most of the above requirements.

The superiority of exponential smoothing methods over the
traditional moving average concept is such that today most
manufacturing organizations of any size use them and no industrial
or brusiness computer software is complete without them.

In Section 1, Chapter 1 develops the concept of the simple exponen-
tially weighted average on which all smoothing models are based and

3



4 Introduction

Chapter 2 is concerned with the more sophisticated variants of tie basic
model, which are necessary for growth and seasonal situations. Chapter
3 examines various measures of dispersion of forecasting errors and
Chapter 4 the smoothing techniques developed specifically for the
automatic monitoring of short-term forecasts. Chapter 5 examines the
possibilities of adaptive forecasting models and Chapter 6, although not
specifically based on exponential smoothing methods, examines the use
of autocortelation analysis in identifying data characteristics, a
necessary pre-requisite for determining the appropriate type of
forecasting model.

The forecasting methods included within this book must necessarily
be expressed in mathematical terms. In order not to ‘frighten off’ the
layman this Introduction will be used to present the ideas of symbolic
representation of variables and the use of algebraic equations. Anyone
able to understand these simple concepts will have no difficulty in
following the material presented.

As an example, let us take a naive forecasting scheme which says
‘Let the forecast for next month’s expected demand be equal to the
demand that occurred this month’. This could be written as:

FORECAST,1; montt, EQUALS DEMAND g monn

Using the first letters of forecast and demand as symbols represen-
ting those variables respectively, and introducing an equals (=) sign, this
forecasting scheme could be rewritten as:

Fnext month = @ihis month

To complete the ‘tidying up’ of this equation we need to simplify
and generalize the subscripts next month and this month. The simplest
way of doing this is to work with months (or, in other situations,
accounting periods, weeks or even days) as our period of time, and to
refer all time to current (or present) time. Thus if we regard present
time as ¢, then future time can be considered positive with respect to
t(ie.ast+ 1, ¢t +2,etc.) and past time can be considered as negative
(ie.t — 1, ¢ — 2, etc.). Having developed a method of subscripting to
indicate time we can now rewrite our naive forecasting scheme as a
generalized algebraic equation of the form:

f:+l =d: (0-1)

Evidence of how much simpler is such symbolic representation,
compared with a written statement, can be seen by considering a more
practical forecasting scheme which predicts that ‘Next month’s
expected demand will be equal to the arithmetic average of the last six
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months’ demand or sales figures’. This lengthy statement can be written
very briefly in equation form as:

t—5
fera1 =Yg E d; 0.2)
i=t

where the summation sign
t—-5

i=t

means in this situation the sum of the values of d; from i equals ¢ up to
and including t —5 (ie.t,t—1,¢—2,¢—3,t—4 and r — 5). Expanding
the summation sign this equation would appear as:

fre1=VYeld, +d,_y +d;_g+d;_3+d,_4+d;_s) 0.3)

which would be an alternative form of equation (0.2).

This concludes the introduction to the concepts of symbolic repre-
sentation and algebraic equations. The material presented in this book
is deliberately chosen not to be more complicated than this.
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Chapter 1

Forecasting for stationary situations

A stationary situation is one in which, although observed values
fluctuate from one time period to the next, the average value remains
steady over a reasonably long period of time, To illustrate this, Fig. 1.1
shows a series of demand values plotted against time. It can be seen that
the average value per month over the one-year period is about 100
items per month, and that this average figure is neither increasing nor
declining significantly with time. This is a typical stationary situation,
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Fig. 1.1 Typical stationary situation
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Fig. 1.2 Non-stationary situation

with individual values fluctuating above and below a reasonably steady
average figure.

Examining Fig. 1.2, however, reveals a completely different situation.
Here the average value is definitely not statjonary but increasing with
time. Such a situation could arise with a product maintaining its share
of a rapidly expanding market or a product gaining an increasing share
of a static (or even declining) market. Exactly what types of market
condition have caused siich values can only be identified by sales and
marketing intelligence, but whatever the reason, this forecasting
situation is obviously a more complicated one than that depicted in
Fig. 1.1 and will be dealt with separately in Chapter 2 as one of two
possible types of linear, non-stationary situations.

Before discussing the mathematical techniques involved in fore-
casting, it might be best to discuss initially just what one should expect
of a forecasting system. First, it should be appreciated that because
one’s forecasts are based on past information, there will always be some
degree of forecasting error. Accepting this, it is apparent that the most
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logical aim of a forecasting system should be to minimize such errors
over a longish period of time. Because forecasting errors can be both
positive and negative (i.e. the forecast can be below or above the actual
value that occurs) a simple cumulative sum of the errors alone will not
be a good indication of whether forecasting errors are being minimized
or not, as this sum will tend towards zero irrespective of the forecasting
system used (see discussion of CUSUM techniques, page 122). A more
effective measure is the cumulative sum of the squared errors since
squaring always produces a positive result irrespective of whether the
original figure was positive or negative. Thus all errors contribute
towards the cumulative sum of squared errors.

Once it has been accepted that some degree of error is present in any
forecasting system, it is evident that the forecast can be only an average
value of what is expected to occur, with errors distributed evenly either
side of that average. In practice it is generally assumed that these errors
are distributed according to a probability distribution known as the
Gaussian or Normal distribution. This point will not be laboured or
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Fig. 1.3 Situation in which the standard deviation suddenly increases



10 Forecasting for stationary situations

explained further here except to say that the assumption is reasonably
true so long as the value of the average per time period is not too low,
which is generally true of the items we are concerned with in short-
term forecasting if this average value is generally greater than ten.

Assuming that errors are distributed normally, we need some
measure of the spread or the degree of dispersion of errors around the
average. The usual measure of dispersion is known as the standard
deviation, represented universally by the Greek symbol o, and Fig. 1.3
indicates a situation in which the standard deviation suddenly increases
owing to a change in the underlying data pattern.

For this situation the forecast would not change appreciably as the
average value remains at approximately 75 per month, even after the
change. However, it is evident that the spread of values, or variation,
has changed after the sixth month and this change, in an efficient
forecasting system, would be noted by a change in the value of the
standard deviation o.

Thus there are fwo basic parameters we wish to estimate in any
forecasting system. The first is the actual forecast which predicts what
the expected or average value in the future is likely to be. The second is
the standard deviation which measures the spread or dispersion of
individual values about that average. Chapters 1 and 2 present methods
of forecasting the expected value in different types of situation and
Chapter 3 describes how the standard deviation can be estimated
together with the methods of evaluating other measures of forecasting
accuracy. '

Foi. _asting time period

A short-term forecasting system treats the total of individual values in
each time period as a single item of data, i.e. demand per day, sales
per week, production per month, etc. Increasing the length of the time
period increases the sample size and hence reduces the variability of
successive individual values per period thus enabling more accurate
forecasts to be made. At the same time, however, the speed of response
of the forecasting system to real or actual changes in the data is
obviously reduced with longer time periods. A balance between these
two effects can be achieved only by the selection of a suitable forecast
time period. :

It can be shown that the minimum value of the forecast time period
should be of a duration to ensure that at least one non-zero value
occurs in two time periods, that is that there is a 50 per ¥ent
probability that a non-zero value will occur during one time period.
This is a minimum; overall considerations may require a longer interval.
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This criterion of having one non-zero value occurring within two
periods is normally met for industrial and business data if the time
period is greater than or equal to one week, and a calendar month (or
more practically a planning or accounting period of that order) is most
typical.

- The number of time periods ahead for which forecasts are produced
is known as the forecast horizon.

The moving or rolling average*

One traditional method of forecasting the future average expected value
per time period is to average the past individual values over the last n
time periods. Such a moving average (,) has already been discussed
in the Introduction see page 5, and could be defined as

t—n+l

1
mp= > 4 (1.D
i=t
or, alternatively,

m,=m,_, +%(d,—d,_,,) 12

This latter version simply means that we put the current value of the
moving average as being equal to the immediate. past value plus 1 /n
times the current value less the value now n periods old.

Having calculated m, for a stationary situation this then becomes the
forecast of what one expects to occur, not only in the next time period
but for any future time period.

This does not mean, however, that if one makes a forecast, say, for
six months hence, this estimate cannot be modified next month, when
an additional month’s information can be used to improve the estimate,
which is now only five months away. This concept may be slightly
difficult to follow but corresponds very much with planning schedules,
which are definite for the first and second months but only tentative
for- the third and fourth months. The tentative plans then become
definite at the next two-monthly review in the same way that a vague
forecast can become more definite as further information is received as
time progresses.

The moving average does, however, in practice have several draw-
backs which are discussed here:

*Known to latter-day, purist statisticians as an autoregressive process.
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(i) Starting a moving average. When beginning the calculation of a
moving average from new data, because it is necessary to have
individual values available for the previous n—1 periods, no true fore-
cast can be made until at least » periods have passed.

(ii) With a moving average, all the data included within the average
are ‘weighted’ equally and data too old to be included are obviously
given zero weighting. The weight of an item indicates the proportion
of its value that an item contributes to an average, which in the case of
the moving average is 1/n for all items included in the average, and zero
for those not included.

A criticism of a method of equal weighting is that more recent data
should be more important than older data and should, therefore, be
weighted more highly.

A method using unequal weights could be proposed to resolve this
feature, and two possible weighted averages based on either fractional
or decimal concepts are shown here as equations (1.3) and (1.4)
respectively. Note that in both the sum of the weights is one; this, by
definition, is always necessary of a true average.

m, = %d, +Y%d,_y +Y16d, 3+ 1d,_3 (1.3)
or
m,=0.4d, +03d,_; +0.2d,_, +0.1d,_4 (1.4)

(iii) With a moving average, the amount of past data that must be
retained can become excessive. A six-period moving average has been
discussed here but, in practice, to obtain an average which is not
excessively sensitive, one can require data from up to 20 periods.

(iv) As the sensitivity or the speed of response of a moving average
is inversely proportional to n, the number of time periods included in
the average, it is difficult to change this sensitivity since it is also most
difficult to change the value of n, as already illustrated by the
initializing-average situation.

Most of the disadvantages presented by the moving average can be
overcome by a moving average of a special type in which the weighting
series is exponential.

The exponentially weighted average*

Suppose that, instead of one of the weighting systems used previously,
it is proposed to use a series of weights whose values decrease
exponentially with time.

*Referred to in more recent, advariced statistical texts — most confusingly — as a
‘moving average® process.



