PROBLEM SOLVING
and COMPUTER
PROGRAMMING

Peter Grogono
Sharon H. Nelson

PR‘BLEMSOLVING
AND COMPUTER

PROGRAMMING

PETER GROGONO

Department of Computer Science, Concordia University, Montreal

SHARON H. NELSON

Metonymy Productions, Montreal

V‘V

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts ¢ Menlo Park, California
London & Amsterdam

Don Mills, Ontario e Sydney

Library of Congress Cataloging in Publication Data

Grogono, Peter.
Problem solving and computer programming,

Bibliography: p.

Includes index. :

1. Electronic digital computers—Programming.
2. Mathematics—Problems, exercises, etc.—Data process-
ing. 3. Problem solving—Data processing. 1. Nelson,

Sharon H., 1948- : II. Title.
QA76.6.G758 519.4 81-7942
ISBN 0-201-02460-8 - AACR2

Copyright © 1982 by Addison-Wesley Publishing Company, Inc. Philippines copy-
right 1982 by Addison-Wesley Publishing Company, Inec.

Al} rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior ‘Written permission
of the publisher. Printed in the United States of America. Published simultaneously
in Canada. ’

ISBN 0-201-02460-8
ABCDEFGHIJ-AL-898765432

P
s

B i

This book has grown out of our perception of a problem. It has become
common practice to combine the subject of problem-solving with a
tutorial for a particular programming language in a single text. We be-
lieve that this practice is misleading; problem solving and computer pro-

gramming are distinct activities. If we are taught to associate problem-

solving methods with a particular language, our thinking is likely to be-
come dominated by that language. This is as true of programming lan-
guages as it is of natural languages. If we learn to ‘‘think in Pascal” we
may fail to find solutions that are expressed easily in LISP or SNOBOL,
or we may get stuck with unwieldy solutions, or our ability to find in-
sights into problems may be severely limited.

The structure of this book, from the separation into two major
parts to the placement of chapters and examples within chapters, is
intended to present a thematic rather than a linear approach. Program-
ming problems, like many other problems, are amenable to solution by
general problem-solving techniques and strategies. Like other problems,
programming problems can be divided into subproblems, and the sub-
problems can be further subdivided, until we reach a level at which
solutions are known or can easily be found. In programming, the first
subproblem is to discover an appropriate algorithm and the second sub-
problem is to implement the algorithm by writing a program. General
problem-solving methods, of the kind that are developed in Part 1 of

v

vi PREFACE

this book, can be applied to both of these subproblems. Part 1 presents
techniques and strategies which are not only aids to general problem
solving but are also aids to good programming. Foundations for the pro-
gramming sections of Part 2 are developed in Part 1, and the program-
ming methodology of Part 2 is based on the tactics and strategies of
Part 1.

There are many approaches to programmmg For example, soft-
ware engineers consider that writing a program is like building a bridge
and mathematical programmers consider that writing a program is like
proving a theorem. The problem-solving approach is not an alternative
but is rather a complement to these approaches. It emphasizes the con-
ceptual nature of programming, the numerous ways of obtaining insight
into programming problems, and the distinction between a high-level
algorithmic solution and a low-level implementation of that solution.

The discipline that has contributed most to problem solving is
mathematics. This is not surprising; successful problem solving requires
a high level of abstraction, the elimination of superfluous details, and
appropriate notations. Mathematics is the language of abstraction and
the source of many notations. Consequently, topics in discrete mathe-
matics, such as induction, propositional calculus, and graph theory, are
introduced in Part 1. These topics are not discussed in depth and sup-
plementary reading in discrete mathematics is strongly recommended.
Although technical skill in formal mathematics is not a prerequisite for
programming, it is undoubtedly very useful, and for advanced pro-
grammmg the mathematician’s concern with abstraction and precmon
is essential.

In Part 2 of this book we discuss the particular problem of writing
a computer program. Although a large part of the work of designing a
program can and should be done independently of a particular program-
ming language, and is done in this way in this book, a language is needed
if complete solutions are to be presented. The language in which ex-
amples are written is Pascal and the notation used for algorithms is
based on Pascal. Pascal has been chosen because it has a simple and use-
ful set of structuring techniques for control and data and it therefore
provides an appropriate basis for an algorithmic notation, This notation,
or something close to it, would be useful for writing.programs in a
procedural language other than Pascal. The developmefgt. of each pro-
gram in this book is largely independent of any particulay programming
language and would have been almost the same if another language had
been used. (Although we have attempted {o avoid using Pascal idioms,
we have used the with statement to achieve compactness, and we have
not been able to avoid using the Pascal dereferencing operator)

PREFACE vii

This book is intended for readers who already have some program-
ming experience and who are familiar with Pascal or with another lan-
guage with comparable features, such as PL/I or Algol-68. Programs are
developed only as far as is consistent with a problem-solving approach.
Complete versions of the programs would validate and echo their input
data, would issue comprehensive error reports when necessary, and
would solve a more general class of problems. They would also occupy
a large amount of space and would contain much material irrelevant to
the text. The programs contain few comments because the surrounding
text provides adequate commentary. The same programs would be
written differently and would contain more comments in a different
environment. We must admit that we are not entirely happy with this
situation, but we have yet to see a program suitable both for inclusion
in a text book and for actual use.

Sometimes a discussion of a problem is separated from a related
example or a program appears several chapters after the discussion it
illustrates. This unconventional ordering is intended to expose under-
lying concepts rather than to quickly provide solutions for given prob-
lems. The point of a problem-solving approach is that it reveals strategies,
techniques, and insights that, once discovered, may be applied in many
different situations. Example programs are not meant to stand as partic-
ular solutions but are intended to illustrate concepts. Chapters are built
around topics and sections are built around discussions so that the de-
velopment of concepts rather than the evolution of particular solutions
becomes the focus for study.

Most of the problems used to illustrate Part 1 are traditional. They
are described in numerous anthologies, notably the excellent and enjoy-
able collections of Martin Gardner. These problems are not presented as
a challenge to the reader, who has probably encountered them before,
but rather for the light they shed on problem-solving techniques. Some
of these problems are very old; one of them appeared in an Indian in-
structional text some 3000 years ago. There must be some reason for
this longevity, and it may be the insight these problems provide into
our ability to think and to solve problems. A further motivation for the
inclusion of traditional problems is thatthey demonstrate the continuity
of thought. We ought not to jettisormr theusands of years of intellectual
work and achievement merely becauses=modern technology has created a
few new problems. We can often beneéfit by reexamining old problems
and their solutions; such examination provides an understanding of how
we reach solutions. From this understanding we can build not only new
solutions for new problems but new solutions for old problems. Working
through example problems will help us to develop insight into the tech-

viii PREFACE

niques that each of us finds most natural and comfortable as well as
insight into the examples themselves.

As we examined and worked through traditional problems, we
realized that the traditional expression of many of these problems re-
flects embedded values and prejudices with which many of us are not
comfortable. This discomfort accounts for the rewriting or recasting of
some of the problems.

This book touches on many subjects. At the end of each chapter
there are suggestions for further reading. In these sections, books and
papers are referred to by author and title; full citations are given in the
bibliography at the end of the book.

Many people have helped us during the preparation of this book.
We are grateful to John Gannon, Henry Ledgard, Garv Boyd, and a
number of others who reviewed various versicns of the manuscript.
Joel Hillel kindly invited one of us (F.(G.) to attend his problem-solving
seminars, and these seminars provided valuable backyround material
for Part 1. '

Montreal P.G.
March 1981 S.H.N.

Life began, as far as we can tell, when a complex mixture of chemical
compounds was so arranged that the most fundamental problems of
living were solved. These problems were, and are, obtaining food, repro-
ducing, and defending the organism against predators. All species must
solve these problems or become extinct.

We do not know if there ever existed an organism that could only
reproduce itself exactly; we do know that the reproductive mechanisms
of all existing species allow small changes to occur between one genera-
tion and the next. Thus at any given time the individuals of a species
will be slightly different from one another. If the environment changes
slightly, the new conditions will favor some individuals and these indi-
viduals will tend to live longer and to produce more offspring than
others. In this way, the population as a whole solves the problem of
adaptation to a changing environment. This is the mechanism of evolu-
tion expressed in its barest form.

Evolution is a slow process which works best for a simple organism
that has a short life cycle and lives in a slowly changing environment.
Complex organisms, which have longer life cycles and live in more com-
plex environments, require the ability to solve problems as they arise
and the ability to do so as individuals rather than as a species over many
generations.

xiii

xiv INTRODUCTION

The first organisms only acted on their immediate physical envi-
.ronment. As organisms became more complex, they attained the ability
to react to their environment as well: they developed nervous systems
and brains. The nervous systems of simple organisms, such as moths,
enable them to absorb some information about the environment, process
it, and respond to it in a particular way. The organism can recognize
prey, pursue it, and eat it; conversely, it can recognize predators and
attempt to escape from them. Although this appears to be problem-
solving behavior, it is not true problem solving because the solutions to
the problems are built into the nervous system of the organism. Con-
fronted by a situation that does not arise in its natural habitat, such an
organism will react in an inappropriate way, as, for instance, when a
moth is confused by the flame of a candle. The ‘“‘wired-in” solutions are
only general enough to allow an individual to solve problems previously
encountered by the species.

More complex: organisms have more highly developed nervous sys-
tems, or brains, and can solve problems that do not arise in their natural
habitats. A rat, for example, can ‘be taught to obtain food by pressing a
lever or running through a maze. This is true problem solving.

All species have evolved mechanisms by which to survive. Teeth,
claws, horns, camouflage, the ability to run, climb, hide, and Ty are all
characteristics that allow members of a species to survive and perpetuate
‘the species. Some species have also evolved the ability to think, and for
a few species this ability has become the dominant survival mechanism.
We are members of the genus homo, species sapiens: we have weak
teeth, feeble claws, no horns, and we can neither run fast nor fly,
but, for better or for worse, we are able to think and to solve some
problems.

' The English word “problem’ is derived from a classncal Greek
word, proballein, which meant “something thrown forward.” The root
of this word, ballein, with a different prefix, syn, gave us the werd
symbol which, if it were true to its etymology would mean ‘“thrown
together with.” Yet another prefix, dia, yielded the Greek word diabal-
lein, which became diabolos and eventually the English word “devil.”
We are indeed “bedeviled” by something ‘“‘thrown across” our paths
from time to time. A problem is that which is forced into ourawareness,
a challenge, something to be overcome or crossed over. The overcoming
or crossing over are often, however, physical activities only in a meta-
phorical sense; we solve problems first of all not by climbing or jumping
over obstacles but by the mental effort of envisioning solutions. Al-
though we may be haunted or tormented or kept awake at night by
some devilishly difficult problem, our solutions are arrived at not so

INTROPDUCTION xv

much by mysterious rites or the preparation of potions but by me-
thodical and often logical thought processes.

As thinking beings we are constantly involved in solving problems.
How do I get to the other side of the street? How can I finish my assign-
ment by Friday? Shall I have supper for less than $5 or can I get to the
bank by four o’clock? Whom shall I marry?

These are problems of the kind that the evolution of our species
and our own upbringing have taught us to solve, and although they are
interesting problems, they are not discussed further in this book. They
are too complicated, too diverse in their ramifications, and too vaguely
defined to be amenable to solution by direct application of the methods
we will discuss. Nevertheless, this book may help you to solve some
problems of this kind, or at least give you some insight into how rational
thinking might contribute to their solution.

The problems we encounter during the course of our work are usu-
ally related to the work we do; the problems a doctor is expected to
solve concern sick people and the problems a plumber is expected to
deal with concern malfunctioning pipes. Although people outside these
two disciplines may detect a humorous relationship between them, the
tools and knowledge that each practitioner brings to the work are
quite different. .

In a study of general problem-solving techniques we do not want
to introduce specialized knowledge of medicine, plumbing, or other
fields. Accordingly, the problems discussed in Part 1 of this book are
puzzles and brain teasers. Most of these problems will probably be fa-
miliar to you and you will perhaps know the solutions to many of them.
This will not detract from their function, which is to illustrate problem-
solving methods.

The concept of mechanical computation is not new. The slide rule
was invented in the seventeenth century by Delamain and Oughtred,
both of whom taught mathematics in London. Pascal built the first
mechanical calculating machine in 1642; the principles of this machine
were used until electronic calculators replaced mechanical calculators a
few years ago. Carillons, music boxes, and automatic looms all have a
long history. What is new is the existence of a technology that enables
extremely complex programs to be executed rapidly and precisely. This
technology, in the form of electronic computers, has given rise to a
craft called programming and to an assortment of craftspersons called
‘programmers.

In Part 2 of this book we adopt the point of view that in writing a
computer program we are solving a problem. The problem is always of
the form, “make the machine do so-and-s0” and the solution is a pro-

xvi INTRODUCTION

gram that causes ‘“‘so-and-so”’ to happen. This problem is amenable to
solution by any or all of the techniques discussed in Part 1.

There are many approaches to programming other than through
problem solving. Most of these approaches stress the importance of
quality in the final product. At a time when computer systems are used
to implement financial transactions, control civilian aircraft, design
buildings and bridges, and guide satellites to distant planets, we cannot
afford to underestimate the importance of software quality. The em-
phasis on the quality of the final product may, however, lead to the
neglect of the early phases of program construction. Early attention to
program specification and design can aid us greatly in the production of
high quality software. How do we choose appropriate algorithms, or if
there are no appropriate algorithms, how do we invent the algorithms
we need? [t is at this stage that problem-solving techniques are most
useful. We need means of obtaining insight, of decomposing complex
problems into simpler subproblems, and notations in which to express.
our solutions.

PART 1

u' }' :‘O | .g,\
S aard e ek 2l

PREFACE
INTRODUCTION

Xiii

PART 1 PROBLEM SOLVING 1

CHAPTER 1 FOUNDATIONS 3
1.1 Memory 3

1.2 Processing 7
Summary 10

Further Reading 10

Exercise 11

CHAPTER 2 STRATEGIES 13
2.1 Statements, Goals, and Rules 13

2.2 Abstraction 15

2.3 Problem Spaces 21

2.4 Inference 34

2.5 Subproblems and Subgoals 37

x CONTENTS

2.6 Working Backwards: 43
Summary 44
Further Reading 46 .
Exercises 47
CHAPTER 3 AFFINITIES 49
3.1 Isomorphic Problems 49
3.2 Similar Problems 52
3.3 Special Cases 53
3.4 Induction and Mathematical Induction 57
Summary 59
Further Reading 60
Exercises 61
CHAPTER 4 NOTATIONS - 63
4.1 Diagrams 66
4.2 Symbols 68
4.3 Formal Systems 70
Summary 77
Further Reading 77
Exercises 77
PART 2 PROGRAMMING
CHAPTERS5 ALGORITHMS 81
5.1 Design 81
5.2 Efficiency 86
Summary 92
Further Reading 93
Exercises 93
CHAPTER6 PROGRAMS 95
6.1 Specification 97
6.2 Design and Implementation 101
6.3 A Program Development Language 104
6.4 Testing, Debugging, and Maintenance 112

6.5

CHAPTER 7

11
1.2
7.3
74
7.5
1.6
1.7

CHAPTER 8

8.1
8.2
8.3

CHAPTER 9

9.1
9.2
9.3
- 94

CHAPTER 10

10.1
10.2

Verification
Summary
Further Reading
Exercises

SIMPLE EXAMPLES

Removing Comments
Storing Distinct Values
Inverting a Function

The Quadratic Equation
The Bisection Algorithm
The Secant Algorithm

A Graph Plotter Algorithm
Summary

Further Reading

Exercises

ABSTRACTION TECHNIQUES

Procedures

Data

Structured Types
Summary
Further Reading
Exercises

REPRESENTATION

The Tower of Hanoi
A Graph Algorithm
Equivalence Relations
Tables

Summary

Further Reading
Exercises

RECURSION

Simple Recursive Algorithms
Recursive Data Structures

CONTENTS

Xi

118
124
125
126

129

129
134
139

144

151
157
162
172
173
173

175

178
184
187
189
189
190

191

192
199
215
221
234
233
233

235

236
245

xii

CONTENTS

10.3 Backtracking
Summary
Further Reading
Exercises

BIBLIOGRAPHY

INDEX

259
266
267
268

275

I # & K

I # & K

