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PREFACE

One might be tempted to ask "Yet another book on Group Theory?"
This .book is different, however, in that it aims to help the ad-

. vanced undergraduate, the beginning graduate student, or the

industrial researcher who would like to be familiar with the tools
of symmetry without having to wade through elaborate mathematical
proofs. Extensive theory to be found in most texts on group
theory has been avoided; instead, attention is concentrated on
discussion of illustrative problems. The choice of material has
been dictated by the experience gained in teaching group theory
courses, and the areas covered include atomic physics, nuclear
physics, particle physics, solid-state physics, and molecular
physics. We believe this is a useful addition to the existing
literature, one that seeks to supplement rather than duplicate
other treatments of the subject, and one that students of mathe-

. matics, chemistry, or engineering will also find useful.

The informal apprdach in this book is motivated by the desire

. to acquaint the uninitiated with the fundamentals of Group Theory.
.Chapters 1 -~ 4 go over the bare essentials and one who needs a .

quick grasp of the tools can afford to omit Chapters 5 - 8. Each
of the latter chapters is meant to familiarize the student with
the applications in different fields at the level of background
preparation. The book as a whole is designed for a oné semester
course for students who had courses in Calculus, Elementary
Linear Algebra and Modern Physics or Introductory Quantum
Mechanics, although Chapters 1 - 4 can be gone through even with-

" out the last mentioned preparation.
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CHAPTER ONE

MATRICES, ALGEBRAS

MATRICES

We will briefly review some properties of square matrices that

are helpful in understanding group representations. In the fol-
lowing matrix

A SR

2 2

1 1

u = "/50 -',5-
. o 1 o |

we know that the determinant of the matrix can be expanded using
the elements in any row:

i O |
/21 + O /2 7%+T2
o] o o

CENY
» O

det U = L (A 1 i

RO TR R Tt
i1 i 1 .
"TER -7 R -

0(0) + 1(- i) +0(0) = -i (1)
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Defining a reduced cofactor as.the cofgctor multiplying the ele-
ment of each row in the expansion of the determinant divided by
the value of the determinant, we obtain a corresponding matrix of
reduced cofactors, the so-called contragredient matrix

( 3

Si-
o]
Sil-

St
Stk

o 1 o | (2)

The transpose of this contragredient matrix is the inverse of U.
Thus v : ) :

i
A A °
vl - 0 0 1
1 i o
2. 2 (3)
v tavtu=1z
\ 1 O 0
where.l is the unit matrix, |0 1 0| . If each element of a
001 h

mackix is replaced by its complex conjugate and if the rows and
columns are then interchanged (transposed), the result is called.
the adjoint matrix

B L
I B A S
v =| o o 1
X 1,
7z 7 (4)

We notice in the above instance, however, U+ is the same as U-l
Such matrices are known as unitary matrices. In this unitary

matrix U any two rows, treated as vectors, are orthogonal, and
each .row normalizes to unity:
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1
i i Tg R o+ i_o (orthogonality of
7z -T2 2 rows 2 and 1)
1 .
| 2
{
_
2
L i 0 ‘l+0+£=1 (row 2 normalized)
ﬁl o, ﬁ N = 2 -2 .
| 7z 5)

The columns have similar properties. If
adjoint it is called a Hermitean matrix.

a matrix is equal to its

For instance,

(1 o L)
2 2|
i +
H = 1 > =
(o} ,7-2- H
1 _ i o .
‘ Zz T J (6)

Iet A and B be two 2 x 2 matrices

£

ab~" e
A=cd’B=g h{

T™wo 4 x_4 matrices are derived from f.hese two matrices, the directy'

7

sum A

& b 0O e £f 0 O
A®B=chO'IB®A=gh_OO
O 0 e f ) 0O 0 a b

O 0 g h 00ch

aB bB ae af be bf)

A®B= = ag ah bg bh
cB aB lce ctf de df

cg' ch dg dh|

B and the direct product A

B
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ea eb fa b
ec ed fc fd
B® » = ga gb ha hb .
gc gd hc hd (8)
The trace of either direct product matrix (the sum of diagonal

elements) is seen to be (a + @) (e + h), which is the product of
the traces of the two factors in the direct product.

U H' U_1 is called a similarity transformation of a matrix H'
U being the transforming matrix. Matrix multiplication shows

1 1 i »
- ~1 - o 1 00
O || °° 7
i i
i =
- — - 2 [o] o1 = -10
/5 (o] 75 (o] (o]
1 i
(o] -1 0 O O 02
°1 ! Z7%i°
-1
U H' U Aisij
or, symbolically,
-1
U RH'U = A.6,. (9) .
i'ij
o 0 -1
where H' is the matrix| O 2 [o}
- -1 © (o]

and X, =1, A, = -1, A, = 2. The Kronecker symbol Gij has the

usual meaning

Sy = 1 =3

= o i # 3 (10)

U is said to diagonalize H' through a similarity transformation,
and the diagonal elements are the eigenvalues of H'. Notice the
trace of the diagonal matrix, that is, the sum of eigenvalues is

1 -1+ 2= 2 which is also the trace of H'. This illustrates the
well~known theorem, of importance in group theory, that the trace
of a matrix is invariant to a similarity transformation. The
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general procedure for diagonalizing any matrix is to be found in
standard texts, for instance D. E. thtlewood (1970) A University

Algebra.

ALGEBRAS

An algebra in which the associative law of multiplication is
valid is called a linear associative algebra. The set of all
n X-n square mattiges (matrix elements complex numbers) forms an
algebra of order n*, called the total matrix algebra. The basis
elements eij of such an algebra satisfy

eij & ™ (o) £k

®i3 %351 T i1 iy

For n = 2 these- are

e o[t . L fen e -[00 . _foo
r’ 7. = r =
11 0 of 12 0o 21. 10 22 o1
In other words, the general basis elément‘matrix eij has 1 in the

i-th row and j-th column and zerces elsewhere.:
. Several interesting results follow when the basis elements of
an algebra are isomorphic to the elements of a group; the multi-
plication table of the algebra will in this case also be the
Cayley table for the group. We illustrate the important proper-
ties of such algebras with the help of two finite groups: the
Abelian cyclic group C4 and the group Cj, (isomorphic to §3 or
Dj). g

We assume the elements of C4 to be isomorphically represented
by basis elements e; such that E (identity element of the group)-
€, Cy * ey, C% + eq, C4 + e4. It is obvious that the constants
of multiplication in the algebra are all either 1 or O because of
the fundamental group property. The common multiplication table
is
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e, e, €3 e,
€1 ©1- 2 €3 €4
e, e, é3 e, e
€3 3 s €1 2
€4 €4 €1 2 €3
>ei e = Yijk e Yijk =1oroO
A general element Qf the algebra is X = 121 x;e, where‘xi are the

chosen complex numbers. We notice that there also exists an ele-

=1, € =‘0 =€ = €

ment of the algebra el = i%1 €ieyr where ¢ 2 3 4’

1
which commutes with every element of the algebra,

e.x ='x'e = x ‘(12)

e, is called the modulus of the aléebna. Furthermore, ei = e

and for this reason e, is said to be an-idempotent. The product
of no other element with e, vanishes; hence e is also called the
principal idempotent. From Eq. (12) we see

2 _ 2 .2 '
. X (x1 + x3 + 2x2x4)e1 + (2x1x2 + 2x2x4)e2
2 g 2
+ (ga + 2x1x3 + x4 )e3

+ (2x1x4 + 2x2x3)e4 (13)

and this cannot be O wmnless all x, are O. An element x of an

- algebra is said to be nilpotent if x® = O for some integer n.
This algebra is thus not nilpotent and contains an idempotent
element. This is a partlcular application of a theorem that says
every algebra that is hot nilpotent contains an idempotent ele-
ment.

We now ask the question: Given x, can we flnd another element
of the algebra y = i Y. ei such that it satisfies the equation
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Xy = Wy
or
(x-w)y = O . (14)

where w is a number. If we carry out the multiplication x y and
collect coefficients of e this equation takes the form

' = 15
[ Jeg+ [ Je,+[ Jeg+[ ley,=o0 (15)
Since e;r by definition, are nonzero, each coefficient in Eq. (15)
mast vanish, and we have four linear equation in yi, which can be
written in matrix form

,

- (v.)
X, =W x, x, x, Y,
X, X, -0 X, e Y,
X, -W X =0
*3 *2 4 Y3
. %4 *3 *2 "1"" ) Y4 (16)

As is well known, for a nontrivial soluth;xthe determinant of
this matrix A(x), a polynomial in w of degree 4, has to vanish.
A(x) is called the characteristie determtnant and A(x) = O .the
characteristic equation.

In the case of a semisimple algebra it can be shown that the
characteristic equation can be reduced, by a similarity transfor-
mation of the matrix equation, to a product of factors that cannot
further be reduced. In our example the unitary matrix

N N O N

N N = N
N N N N
Y L Y P Ny Y T

\ J (17)

reduces the matrix equation to
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vl (x-uy)ylu™t = 0 ' (18)
( (x1+x2+x3+x4-m) (o] o o )
(o] (x1+ix2-x3-ix4—w) (o] o
0‘ : (o] (xi-x2+x3-x4-w) 0
{ (o} o ' (¢} (xo-ixz-x3+ix4-w))
| =0
(19)

The characteristic equation is thus reduced to four linear fac-
tors; each of the first degree in xi

*x3-ix4-m) (x, -x_+X_-X -Ww).

2 1727374
—x3+ix‘-m) = 0. (20)

(x1+x2+x3+x4-w) (x1+1x

(xl-z.x2
The number of irreducible factors being 4 is a consequence of
there being four elements of the algebra (in this caseé, all the
elements!) that commute with every element of the algebra. That

each factor is linear in the numbers Xy and raised to the first
power is related to the fact that

Z(nu x nu) = 4 = order of the algebra
H , :

where n is the degree of the x, in each factor, and also the

power of that factor in the product. This indirectly verifies
the theorem that a semisimple algebra is equivalent to a direct
sum of total matrix algebras, here a sum of four 1 x 1 matrix
algebras. Of significancg is the fact that the C4 group has four
classes. 1If, for instance, we choose x, = X, = X, = 0 and

x = 1 as the numbers defining the element x, then the roots of

the characteristic equation will be
w = 1,4, -1, ~i . . ‘
These are the one-dimensional matrix algebras into which the

given algebra decomposes. These numbers are familiar from the
character table of C4!
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A more illuminating example is the algebra of orxder 6 with
basis elements e,, e,, €., €,, €, € isomorphic tp the elements »

of the Group C3v with the correspondences
+C, e *D, e  +F

e, *E, e, TA, e 5

3>
1 2 37 Bre

4 6

The multiplication table of these elements is shown in Table I.

TABLE I. MULTIPLICATION TABLE OF THE ALGEBRA

& €2 €3 €4 €5 €6
€ € €2 €3 €4 s %6
€2 €2 € s €6 €3 €4
€3 €3 6 he ! €5 e €2
€ €4 s 6 €1 €2 €3
€5 s €4 €2 €3 s €1
3 6 €3 €4 €2 €1 s

We now list a few properties of this algebra

1. The algebra has a modulus e, because e
1
i=1,2,..6.

1ei = ei el = ei for

2. The algebra has an idempotent that is also a principal
idempotent el2 =e. there does not exist an ej for which

elej = 0 or eje1 = 0.

3. The subset of elements e s €5 e forms an algebra in it-

self; this is then a subalgebra of the algebry (also with a
modulus) . However, the products eiel, elei, eies, esei,

eies, e6ei where e, is any element of the main algebra, are
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not all members of tﬁis»subalgebra. For instance, e,85 =
ey and e, is not in the subset. When this does not happen,
the subalgebra is not an'"invariant subalgebra". An algebra
that does not have an invariant subalgebra is called a
"gimple" algebra. This, then, is a simple algebra.

4. This algebra does not have a nilpotent element, that'is,
et;_ # 0 for any e; and for any n. It is obvious that the
sukalgebra does not have a nilpotent element either.
Algebras having no nilpotent invariant subalgebras are
called semigimple. Our algebra is, therefore, a semisimple
algebra. - Naturally, all simple algebras are semisimple.

5. The following theorems are at once satisfied:
A simple algebra always contains an :Ldempqtent element.

Every algebra that does not possess a modulus has a nil-
potent invariant subalgebra.

A semisimple algebra alwa;'s has a modulus..
i

If an algebra has a modulus e;, this element is a prin-
.cipal idempotent and the only one.

The important consequence of the algebra being semisimple is that
it is equivalent to a direct sum of total matrix algebras. This
can be seen a little more explicitly with the help of the charac-
teristic equation.

The characteristic equation of x is

X, -0 Xy Xy x, X xg
x {x, -w) s x b'q x

2 1 5 6. 4 *3
x, x6 (xl—w‘) xs x, x,

= 0

x4 x5 Xg (xl-m) x3 x2
g X %) X3 (%) -w) *s
Xs ' x5 X4 X, Xg (xl—w) (21)

a polynomial in w of the sixfh degree. A sgimple algei)raic multi-
plication goes to show that there are three linear sgets that com-
mute with every element of the algebra:



