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PREFACE.

- Ta18 text is intended primarily for the college and the tech-
nical school. By treating orly the subjeets usually given in the
college course in algebra, space has been gained for a more detailed
exposition of the more difficult topics. As the extent and the
character of the review at the beginning of the course npon topics
prescribed for entrance to college varies so widely, and as the
review is usually conducted in an iaformal manner, it seemed best
to the author to leave to the instructor the review of the ele-
mentary principles, but to gwe in the text review exercises.

As to the order of the subjects, the aim has been to present
first those topics which are readily mastered by the student, and to
reserve for the latter part of the text the questions grouped sround
the subjects involving infinite series. In reviewing the subject
of simultaneous equations, the student is led naturally, almost
unavoidably, to the determinant notation, Determinants are there-
fore treated early in the text, an order of presentation shown by
actual experience to give very eatisfactory results, especially in
arousing the interest of the student.

In the chapter on grsphlc algebra, the first principles of
codrdinate geomeiry are introduced and applied to the study of
simultaneons equations and imequalities. In this connection is
presented an elembntary account of the solution of numerical equa-
tions, chiefly from the graphic standpoint. The arrangement 1s
such as to admit of & very brief course or of a fuller course
involving Horner’s method of synthetic division. The practice of
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emphasizing graphic algebra in courses for technical students com-
mends itself also to the geneml student.

Attention is invited to the proofs of the fundamental theorems
on logarithms, the treatment of mathematical induction and the
1llustrations showing the necessity of the different steps in the
process, the examples from the pnysical sciences of the topic varia-
tion, the complete proof of the general binomial theorem independ-
ent of the principle ‘“permanence of form,” the establishment of
the relations between the roots and the coefficients of the quad-
ratic, cubic, and quartic equations prior to the probf of the general
theorem, the solution of those equations before introducing the
assumption that every equation has a root (here proved in the
Appendix). ) :

The attempt has been made to present the sub]ects hmlts and
infinite series in as simple form as is consistent with rigor.

Forty-five sets of exercises, averaging over fifteen to a set, are

given at very short intervals in the text. Some historical data

have been introduced, with no attempt to give the source, the

| aub;ect-matter being classical. :
The author is under great obligation to Dr Moulton, of the_ :

Department of Astronomy of the University of Chicago, who read
with care the entire manuscript and offered numerous suggestwns
as to the form of presentation, most of which have been adopted.
Likewise the thanks of the author are due Professor J. W. A.
Young of the same University, who exammed the more critical

chapters and offered valuable suggestions.
Proof-sheets of the entire book were carefully read by Professo*

L. L. Conant of the Worcester Polytechnic Institute, whose COTITEC-

tions and suggestions have led to numerous 1mprovement3 Finally,

 the author is indebted to Professors Moore and Young of the Uni-
vermty of Chlcago, who examined crltlca.lly the proof-sheets of

certain portions of the text.

CHiCcAGO, January, 1902,
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=, oqunl‘.

| #£ , not equal.
< , approaches, 106,

® , infinity, 69, 105.
o= 2.71828..., 137,
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’ uor;' ﬂ.Pf’ 86'

A.P., G.P., H.P., 64.

Bin, cos, 208,

|#j = absolute value of #, 114.
Al=1X2X3X...Xn, 86
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COLLEGE ALGEBRA.

-~ CHAPTER 1.

NUMBER. IN ALGEBRA: SURDS AND IMAGINARIES.

1. The natural numbers or positive integers (1, 2, 3, ...) make
it possible to enumerate the objects of a group considered for the |
time as equivalent entities. It has been established that primitive
‘counting was done on the fingers and that in many languages the
numeral 5 is merely the word for hand, 10 for both hands, and 20 .
for the whole man (hands and feet).* While 5, 10, 20, and 60 have
been used as bases, 10.1s the usual base.

If a group of objects can be partitioned into equivalent smaller .
groups, each smaller group or a combination of them is a fraction
(3, §, & ...) of the original group. Abstractly, a fraction is the
quotient of two positive integers. Fractional results may or may
not admit of an interpretation in a particular problem. A shepherd
would declare it to be impossible to separate his flock of 50 sheep
into three equal flocks ; but would find no theoretical difficulty in
dividing a 50-foot rope into three equal pieces. The algebraic
statement for each problem is the same : to find 2 such that

'
.

* Thus in the language of the Tamanacs, the word for 6 is ‘‘ one on the
other hand ”; the word for 12 is ““two to the foot”; for 15, “a whole foot ”’;
for 16, ““one to the other foot”; the word for 20 1is ‘“opne Indian”; for 40,

‘““ two Indians ”’; etc.
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3z = 530. The formeal solution 18 =z = &2 ; the possibility of iis
interpretation depends upon the character of the special problem.

- The Egyptians used fractions before 1700 B.c.* and resclved
them into sums of unit fractions. Thus % was written 3 15, which
meant % -+ 1‘, By the Babylonians, § was written 37 30, which

mea.nt i) + g 03 Instead of fractions, the Greek geometers used

the ratio of two numbers or two magnitudes.

Far the introduction of negative numbers (as well as the decimal
positional system and the symbol 0), algebra is indebted to the early
mathematicians of India (between 500 and 600 A.D.). We now
find it convenient to write — 15° for 15° below zero ; — 100 ft. for
100 feet below sea-level, thereby abbreviating our map notations.
The determination of & number z such that & + 2 = ¢ leads to the
algebraic solution z==¢ — 5. If b exceeds ¢, the result c — b is a
negative number. Such & result would be excluded if the problem
were to find how many feet of rope must be added to & rope & feet
long to make a rope ¢ feet long. Baut the negative result leads us
to restate the problem so that the required c-foot rope is seen to be
obtained by cutting off & — ¢ feet of rope from the 3-footi rope. |

In this connection, we note the Roman notations IV for 4, VI
for 6, IX for 9, XI for 11, which seem to have been of Etruscan
origin.

The term rational nember includes positive and negative in-
tagers and fractions. All other numbers are called irrational.

The solution of equations of the form z* = A, where 4 is a
rational number and » a positive integer, introduces two classes of
irrational numbers. Thus, for n = 2, and A a positive integer not
the square of a rational number, the square root of 4, denoted by
the symboi ¥ A i8 an irrational number called a guadratic surd.
Simﬂm'ly, v, V v A A not the cube of a rational mlmber,_

* Rhind pa.py'ms, o Dlrectiom for Attaimng to the Knowledge of A.Il
Dark Things.” |
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are surds of the third order. In general, V4, where 4 is positive
if n is even, is a surd of order n. The second class of irrational
numbers are defined by the symbols V' 4, where 4 is negative and
n even (§ 4).

While the equation z® = 80 possesses the formal solutions
z=+ ¥'80 (the positive root is designated 480, the negative — 4/80),
the possibility of the interpretation of one or both results depends
upon the character of the particular problem. Itis possible to form
8 square of area 80 square feet, but impossible to arrange 80 square
blocks of equal size in the form of a square and yet preserve the
- form of each block.

2. The fact that surds really exist as such may be illustrated by
showing that 42 is not expressible as a rational number. If we
take the side of a square as the unit of length, the diagonal is of
length #/2. But it is proved in Geometry that the side and diago-
nal are incommensarable (see § 55). - Hence 1 »nd 2 have no
common meagure. It follows that 42 is not equal to a rational
number. For, if
(1) | Ve =2

q
then -;—would be contained p times in 42 and ¢ times in 1 and hence

be & common measure of 1 and ¥/7%,
- To givea purely algebraic prcof, suppose that equation (1) holds

true, the fraction ggbeing in it8 lowest terms, so that p and ¢ are

integers having no common divisor, By squaring and multiplying
by ¢% we get 2¢* = p?, so that p? and therefore p is divisible by 2.
Setting p = 2r, we get ¢* = 2r?, so that ¢ is divisible by 2. Then
- p and ¢ have a common divisor 2, contrary to hypothesis.

3. But with the introduction of rational numbers and surds, we
do not meet all the demands which are made upon 8 number system.
We are led in Geometry to consider the number  which expresses
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the ratio of the circumference to the diameter of a circle and to
approximate its value by considering the perimeters p, and P, of an
inscribed and a circumscribed regular hexagon, the perimeters p,
and P,, of an inscribed and a circumscribed regular polygon of 12
gides, etc. From the results, true to four decimal places, for a
circle of unit diameter:

P =3 y Py =3.1058, ..., Dy =3.1415, ...
P, = 3.4641, P, =3.2153, ..., P, =3.1416, ...

. we obtain a succession of nu_inbers between each pair of which the
value of 7 must lie. By proving that

Pe< Pu< Pu<.oo < pu<---<T,
P.>Pl,>Pu>...>Pm>...>7r,

and that the difference P, — p, can be made to differ from zero ae
little as we please by sufficiently increasing the number of sides »,
‘we have pointed out to us, with as great a degree of precision as we
may desire, a certain limit, which we take as the value of z.

In an analogous manner, we can define the number ¥'2 by means

of two sequences of mtwnal numbere,

1, 14, 1.4, 1.414, 1.4142, 1.41421, ...
2, 1.5, 1.42, 1.415, 1.4143, 1.41422, ...

By the arithmetical process for the extraction of a square root, we
find that the value of 42 lies between each pair of corresponding
numbers in the sequences.

In general, two such sequences of rational numbers proceeding
by a given law are said to define, by a limiting process, a number.*
The value of the number may be determined to as great a degree of
approximation as may be desired. All such numbers as well as all
rational numbers are called real numbers.

* The above sequences which defined the number = can evidently be
replaced by sequences of rational numbers related to the p, and P,.
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4. An even root of a negative number is called an imaginary
quantity. Thus 4 — 1, V= 2, V — 1 are imaginaries. Unlike
surds and other real numbers, an imaginary can not be expressed
approximately in terms of rational numbers and hence has no inter-
pretation in strictly arithmetical problems. By the introduction
of imaginaries, we may give a formal solution of the equations
= — 1, 2° = — 2, and, indeed, of every quadratic equation.
By extending the system of all real numbers by the introduction of
the quantity 4 — 1, we obtain the quantities @ + % 4 — 1, where
a and b are arbitrary real numbers. We shall see that the system
of these complex quantities 4 -+ % 4 — 1 forms a number system
within which may be performed all algebraic operations including
the solution of all algebraic equations, so that a further extension
is unnecessary. The employment in algebra of imaginaries has
therefore a great practical value in that the operations may be
effected without the limitations otherwise necessary. To further
justify this extension, we recall that negative, fractional, and surd
numbers were introduced to enable us to give a formal solution of
many simple problems which would otherwise have remained
insolvable, and that the possibility of the interpretation of nega-
tive, fractional, or irrational results depends upon the nature of
the particular problem.* ' ' |

5 If a + ¥b = ¢ + ¥d, where a, b, ¢, d are rational fnumbars
and V'b ts irrational, then a = ¢, b =d. |

Froma —c + ¥ b = ¥/d, we derive, after gquaring, |
2@ —c)¥Vb=d—b—(a —c)%
Unless the coefficient @ — ¢ is zero, we could express 44 as a rational
number, contrary to assumption. Hence @ = ¢, so that b = d.

*# A possible interpretation of complex quantities is given in the Appendix.
The instructor may prefer the illustration by means of operations which com-
hine a rotation with a magnification. Thus ~— 1 rotates through 180° ¢/ — 1
through 90°, 4 + 8 ¢ — 1 magnifies five-fold and rotates. See Chrystal’s

Algebra, 1, p. 289.
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8. Let us attempt to extract the square root of a + 43, where
4'b is & true surd and a is rational. We seek a result of the form

Va 4 ¥ in wbich @ and S are rational. Setting
Va + Vb = Va T ‘/Ea

and squaring, we find that

a+Vb=a+ 4 2¢Vap.

By the above theorem, we may equate the rational parts and allo
the irrational (surd) paris. Hence

a=«-} B, b = 4ap8.
"Thea (@ — B)* = (a4 ) — 4af = a® — b, so that
a=Ha+VF—1%), p=1ia—Va®—b).

By assumption a and @ are rational. [Hence tke square root of

8 + Vb i3 expressibls as a sum of twe quadratic surds ¥Va + ¥8

if, and only if, a® — b 18 the square of a rational number. |
For example, if a =6, b =20, a®* — b 18 the square of 4,

Hence & + b = 6 4 20 is the squareofﬁ—l—f/ﬁz_— V5 + 1.
When the problem ias solvable, it may usually be done by inspec-

tion as follows. Pui the expression @ 4- 45 into the formm + 2 Vs

by taking m = @, n = &/4. The required root is '« 4 4§, where

a4 f=m aff = n.

Thus 6+4/f‘i_6_-_—_6+21/§=(1+‘/'5')2$
since -* 145=26,1.5=5.
Thus 16 4+ 6 /7T =168 4 2 ¥/63 = (VT + ¥,

since T4 9=16,7-9 = 63.

7. Denote by ¢ the symbol 4/ —1. Then J- ¢ and — ¢ are the roots
of 22 = — 1. By the symbol ¥ — ¢, where ¢ is positive, we shall

mean ¥ — 1 ¥¢ = i ¥/¢, where #/¢c denotes the positive square root
of ¢ Thus

= =1, =—4, *=+1, *=(—1), "t i=g(— 1)
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If ¢ and d are any two positive real quantities,
V—cV —d=ive ivd=—VcVd=—¥cd.
- In introducing the equation 2° = — ¢ as an equation to be solved -
" by algebra, we are tacitly assuming that z may be combined with itself '-
and with real numbers according to the laws of algebra for the com-
bination of real numbets, go that d ¥ — ¢ = VvV —¢ d,d+ ¥ —¢=
¢ — ¢+ d, ete. In addition to these assumptions, we assume that
complex quantities may be combmed according to the laws holdmg
for real numbers. Then
(@ + bi) & («+ i) = (a £ @) + (b + )i,
(¢ + bi) (@ + i) = (a — 8B) + (aB -+ ba)i,
a-+ i (a+pi)(a—b) aa'+bﬁ aﬁ-——-ba
a + b (a4 &)a— W) a’—f—,li"’_*—a""—i-b’
~ Hence the sum, difference, product, or qwtwnt of any two complex
gua.nmws is itself @ complex quaﬂtzty

In freeing the denominator of the above fraction from imagi-
naries, we used the multiplier @ — &%, called the eonjugate of the
denominator @ + &1. - The ‘sum and the product of two conjugsate
complex quantities are both real. o | |

8. The three cube roots of unity are

L, weg—4+3¥V =3, @=—}—}¢=
so that ©* =1, 14 @+ &*=0.

The roots of 2* = 1 are z = 1 and the two rool:s of
f_}—-:t’+:z+l—-0 |
Completing the square in the quadratic equation, we get

Flrti=@+P=—1
. Hence z*-—-&:l:!/-—% Settlng——%+§1/—3-m, the
second root 1s
— -4V =3=(—}+ Y- =o

9. In an equation bedween two complex guaniities, ﬂw real parts

are equal and aiso the zmagz nary parts

*The complex quantity ¢ + bi is real if b = 0.

SRR T L R R T 2
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Let a 4 Zn = a 4 B4, where a, b, a, £ are real numbers. Then
a—a=(f — b)i. |
Upon squaring, we find that the number (@ — a)?, which is positive

or zero, must equal the number — (£ — &)?, which is negative or .

zero, so that each must be zero. Hence ¢ = a, b = B.

In particular, if ¢ + 42 =0, thena =0, b = 0.

10. The square root of any complex quantity may always be ex-
pressed as a complex quantity*

Let the given complex quantity be a 4 b¢, where ¢ and b are
real and 7 = 4 — 1. We seek real numbers x» and y which will
make

Va+bi=aﬁ+yi.-

Squaring, a 4 bt = 2® — y* - 2zyi.
Equating the real parts and also the imaginary parts,
22— y*=a, 2wy=A"b. o
Then (2 — ¥°)* + 42y = (* + ¢°)* = o + P,
Since z and y are to be real, «* 4 3* must be positive. Hence
24+ y=+va*+ 8 (positive square root)

Naving the sum and difference of * and y*, we derive

YT P+a , Vi B—a
- T 2 oy y___.—_ 2 B

Since 44 + &2 is positive and greater than a, the expressions for z*
and 4 are positive, so that real values of 2z and y may be determined
by extracting the square roots of positive quantities. Since 22y = &,
the sign of y is determined as soon as the sign of z is chosen.
Hence there are always two and only two square roots of a - bz.
For example, to ﬁnd the square roots of 5 — 124, we have
| z: —y* =35, 2xy--—-12

whence 2 + ¢* =13, 2* =9, y* = 4. The square roots are
) :l: (3— 2¢).

* Contrast Wlth the theorem of §6. The extraction of higher roots of
complex quantities is done very simply in terms of trigonometric ratios [see

Appendix].
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The inspection method of § 6 may be extended to find the
square roots of certain complex numbers ¢ 4+ b4 — 1. Thus for
— 3444 —1, set

V -3 424 4= Yz ¥ —y (zand y positive).
o =82V —d=z—y 42V —ay.
gy = —3, zy=4 | (by §9).

Hence z = 1, y = 4, so that one square root of-—3+41/--1 iy
1+2V 1.

EXERCISES.
Express with rational denominators | ' |
, 2—¥3 o VB +3 g ¥B4 4B
PN ' 4(5—2' 11— 415
o, VB A5+ Y10 1+y8 = 83+ 4 -5
V3 — 5+ Y10 Y2 - Y3 BT "4 ¢ =1
. 3+864¢ —1" .5 a+b4/::j -
2841 "a—~by ~1 | B
1 14472

8. Approximately, 42 = 1.4142, 43 = 1.7320; find ————, .
pp . Y ¥ s ¥/ fnd e T
10. Simplify 445 4 420 4 848, T4/% — 245 416+ V3.

11. Simplify 74/ =18 — 24/ =97, ¥ —8x ¥/ — 55, »,/-9_;;4/—_

Express in terms of surds the square root of

13. 12 - 648. © 13.28- 4800. . 14. 16 — 8 ¢/3.

15. 29 + 6 4/22. 16. 756 + 12 4/21. 17. 47 — 4 4/88.

18. @ -+ b -} ¢/2ad | ¥. 1. 14+ + V14 a2 4 at,. . - !
Express in the form @ + 5 4 — 1, o and b resl, t_he square root of

$0. — 11 4+ 60 ¢ — 1. 81, — 47 4 ¢ — 192 |

22, — 20448 ¢ — 1. a3, -7+244/-1

M. & —d? —~ 2y = 25. 4cd+2(c’--d’)4/_

26. Prove, as in § 2, that 4/_ and 4/Z are not exPresslble as rational
numbers.

27. Prove that 1 + 4/2 is not a surd by showing that an equation
{14 1/5-3)“ = r = a rational number |

would require (1 — #/2)* = ¢, whereas the two equations are contmdictory
alncelJ-f’Ehl-M% | |

Y



 OHAPTER II.

EXPONENTS ; LOGARITHMS,

11, If m is a positive integer, a™ denotes the product of m
factors each of which is a. Similarly, if » is a positive integer,
a*=a.a...a, ton factors. Hencea™.a"=a.a...atom4n
factors = a™*". 'We may therefore state, for the case of positive
integral indices m, =, |

The First Law of Indices. The index of the product of two
powers of the same quantity is the sum of the indices of the factors :

(1) | a™.a* = a™t",
As a corollary, we derive the formula
a™.a*.ab. ... q0 =gt Pt

182. For the division of two positive integral powers of @, @ = 0, -

@ _a.a.a...a (tomfactors)

& a.a.a...a (ton factors)

=a.a...a (tom — n factors) |
it m-> n. We may state, for m and n positive integers, m > n,
" The Second Law of Indices. ZT%e¢ index of the quotient of two
powers of the same quantity is the excess of the index of the numer-
ator over the index of the denominator :

(2) o/ = o (@ # 0, m>n).
13. If mn and n are positive integers, we have, by definition,

(@™)*=a™.¢"...a" (ton factors)
= gntRte .t m = ghe (by§11).

Henoe, for positive intégral indices, we may state

1Q

i
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The Third Law of Indices. 7%e¢ index of the nth power of a™ 8
the product of the indices m and n: |

(3) (a™)® = a™.

14. We next extend the use of the symbol a" to cases in which
n i8 negative or {ractional, assuming that such new symbols a™ will
satis{y certain cases of the above first law of indices, and proceed
to determine what meaning, if any, may be attached to the gen-
eralized symbols. It is later shown (§ 15) that the symbols, with
the meanings thus obtained, satisfy the three laws of indices for m
and » any ratiohal numbers. For this reason the interpretations
of the symbols are justified and the desired permanence of the

algebraic laws is attained.
I
Consider the symbol a¢, where ¢ is any positive integer. Since

the symbol shall satisfy the first law of indices,
R S . 11
a% .a%.a9.,. (to g factors) = a7 ' ¢
1 | o
Hence 2 @ must be such that its gth power is a, that is,*
) |

ol q
aQ:"/E.

Similarly, the symbol a®/%, where p and ¢ are positive integers,
must be such that "

) |
+ + .. . (tOQ torms)
q -—“"-—ﬂl:—"d.

P P 'E—#--E—f-...(toqum} .

at.as...(togq factbrs) = a1 = qP,

so that a*/¢ must be a gth root of a®>. Hence
*'1 = Vb

l s .
Since the symbol a< obeys the firet law of indices, we find that

¢ 1

as.aq.. .r(top factors) = g7 = (%)

b

ARl r—— W

* The radical sign is used to denote a particular root. Thus
:ﬁi:-l—ﬁ, — 44 = —2; hence4‘=+2.

i



