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Preface

This book is an attempt to bring together all the available results on “inverti-
bility of singular matrices” under a unified theory and to discuss their
applications.

It is well known that if A is a square non-singular matrix, then there exists
a matrix G, such that AG = GA = [, which is called the inverse of A and
denoted by A~ !. If A is a singular or a rectangular matrix, no such matrix G
exists. However, Moore extended the notion of inverse to singular matrices
in 1920 and discussed the concept at some length in 1935. Moore’s definition
of an inverse of A is equivalent to the existence of a matrix G such that

AG=PA, GA=PG

where Py stands for the projection operator onto .#(X), the space generated
by the columns of X. Unaware of Moore’s work, Penrose defined in 1955
an inverse G of A as satisfying the conditions

AGA = A, (AG)* = AG
GAG =G, (GA)*=GA

which are equivalent to Moore’s conditions (when the inner product between
two vectors X, y is defined as y*x, where * indicates conjugate transpose).

In three fundamental papers Tseng (1949a, 1949b and 1956) considered the
problem of defining inverses of singular operators, which are more general
than matrices. Attempts at defining and using an inverse of a singular matrix
have been made from time to time (see Bjerhammer, 1951, 1957, 1958) but
the results were less general or offered no systematic study.

In 1955 one of the authors, Rao, constructed an inverse of a singular
matrix that occurs in normal equations in the least-squares theory, which
he called a pseudoinverse, and showed that it serves the same purpose as
the regular inverse of a nonsingular matrix in solving normal equations and
also in computing standard errors of least-squares estimators. Rao’s pseudo-
inverse did not satisfy all the conditions of Moore¢ and Penrose, and the only
property required of the inverse G was “‘that x = Gy provides a solution of -
the equation Ax =y for any y, such that Ax =y is consistent.” This is

vit
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provided by a matrix G satisfying the only condition AGA = A in Penrose’s
definition. In 1962 Rao called a matrix G satisfying this single condition,
AGA = A, a g-inverse (generalized inverse) of A and studied its properties
in greater detail. In many practical applications, it is sufficient to work with
a g-inverse satisfying this more general (weaker) definition, as demonstrated
in two other publications by Rao in 1965 and 1966.

A g-inverse so defined is not unique and thus presents an interesting study
in matrix algebra. In a publication in 1967, Rao showed how a variety of
g-inverses could be constructed to suit different purposes and presented a
classification (with nomenclature) of g-inverses.

The work was later pursued by Mitra (1968a and 1968b) who introduced
some new classes of g-inverses. Further applications of g-inverses were con-
sidered in the joint publications by the authors (Mitra and Rao, 1968a, 1968b
and 1969). The present book essentially describes the work of the authors
and also within its framework brings all the important contributions by other
authors on this subject up to date.

Some principal contributors to this subject since 1955 are Greville (1957),
Bjerhammer (1957 and 1958), Ben-Israel and Charnes (1963), Chipman
(1964), Chipman and Rao (1964) and Scroggs and Odell (1966). Bose (1959)
mentions the use of g-inverse in his lecture notes on Analysis of Variance.
Bott and Duffin (1953) introduced the concept of a constrained inverse of a
square matrix, which ix different from a g-inverse and is useful in some
applications in network theory. Chernoff (1953) considered an inverse of a
singular n.n.d. matrix, which is also not a g-inverse but is useful in discussing
some problems in statistical estimation theory.

Chapter 1 of this book, Generalized Inverse of Matrices and its Applica-
tions, contains statements of certain results in matrix algebra which aré used
in the discussions of the later chapters. It also explains the notations used in
the book. Properties of g-inverse based on the singlecondition AGA = A, and
on the conditions AGA = A, GAG = G called reflexive g-inverse, are studied
in Chapter 2. Solutions of some important matrix equations are also con-
sidered. It is shown that in many problems one needs a g-inverse satisfying
the only condition AGA = A, and the other restraining conditions can only
serve special purposes. Chapter 3 examines conditions on a g-inverse to
obtain (i) minimum norm solution of a consistent equation Ax = y, (i) least-
squares solution of an inconsistent equation Ax =y, and (iii)) minimum
norm least-squares solution of an inconsistent equation Ax = y. It is shown
that the g-inverse which produces a solution of the type (iii) is precisely the
Moore-Penrose inverse. Other special types of g-inverses with reciprocal
eigenvalue property, etc., are considered in Chapter 4. Chapter 5 contains a
general discussion of projection operators and idempotent matrices and their
explicit representations in terms of g-inverses of matrices. Simultaneous
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reduction of two hermitian forms when none of them need be positive definite
is considered in Chapter 6. Applications of g-inverse in problems of estima-
tion from linear models and robustness of statistical procedures under devia-
tions from specified models are examined in Chapters 7 and 8. Very general
results on the distribution of quadratic forms of random variables having a
singular normal distribution are obtained in Chapter 9. Applications of g-
inverse in network theory, mathematical programming and some problems
in mathematical statistics (discriminant function when the dispersion matrix
is singular and maximum likelihood estimation when the information
matrix is singular) are considered in Chapter ‘10, while computational
methods for obtaining a g-inverse are discussed in Chapter 11.

The new classes of constrained inverses introduced in Chapter 4 deserve
special mention as they include all the types of g-inverses as special cases.

The material covered in the book relates to the research work done during
the last 15 years and a number of unpublished results recently obtained by the
authors. The applications of g-inverse are rapidly increasing ; we have con-
sidered in some detail only a few of them. We hope that this full-length
monograph on the subject will be of use to students and research workers
in various fields. In the book we confine our attention to matrices only.
Extension of the results on matrices to more general operators in abstract
spaces offers a good scope for research work.

There is enough material in the book for one term course on g-inverse of
matrices. In addition the book would be useful as supplementary material
in a variety of courses such as Matrix Algebra, Network Theory, Math-
ematical Statistics, Optimization Problems and Numerical Analysis.

It gives us great pleasure to thank Mr. Arun Das and Mr. Mehar Lal, who
have undertaken the heavy burden of typing the manuscript for the press
at various stages of preparation, and to P. Bhimasankaram for reading
the manuscript and making helpful comments.

Calcutta, India C.R.Rao
April 1971 S
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CHAPTER 1

Notations and Preliminaries

In this chapter we introduce the notations and some of the preliminary
results on matrices needed elsewhere in the texi. The proofs of these results
will be found in standard textbooks on matrix algebra and are therefore
omitted here. See, for instance, books by Gantmacher (1959), Householder
(1964), Pease (1965), and Perlis (1952). A fairly complete discussion of prop-
erties of matrices, with special reference to applications in mathematical
statistics, is contained in Chapter 1 of Rao (1965). .

Matrices are denoted by boldface capital letters such as A, B, . Boldface
lower-case letters x, y, ... denote column vectors, used synonymously for
matrices with only one column. A null matrix or a null vector is denoted by 0.
Unless otherwise stated, we shall consider only those matrices and vectors
with elements defined over the field of complex numbers. In Chapters 7, 8,
and 9, however, we consider only real matrices and vectors.

1.1 ROW AND COLUMN SPACES OF A MATRIX, SUBSPACES
AND ORTHOGONAL COMPLEMENT, PROJECTION OPERATOR

Vector Spaces

For a matrix A of order m x n the linear space spanned by the columns
of A is called the column space of A and denoted by the symbol .#(A).
Row space of A, defined analogously, can therefore be denoted by .#(A’);
&" and A" denote the vector spaces of all n-tuples with complex and real
coordinates, respectively.

Notice that .#(A) consists of precisely those vectors in &™ which can be
expressed as Ax for some x in &". It is convenient to think of a matrix A as
a linear transformation &" & &™, in which case .#(A) is the range of the
transformation A. The null space of A is, on the other hand, the set of all

1



2 NOTATIONS AND PRELIMINARIES

vectors in é"" that are mapped into the null vector in &™ under this trans-
formation.

Basis. Any set of linearly independent vectors spanning a given vector
space (which may be a subspace) is called a basis of the vector space.

Dimension. The dimension of a vector space ¥, denoted by d[¥7], is the
number of vectors in a basis of ¥. :

Linear functional. A linear functional on a complex vector space ¥ (i.e.,
a vector space on the field of complex numbers) is a complex-valued, additive
homogeneous function & defined on ¥ that is,

dx +y)=&x) + Uy Vxye7,
¢ax) = al(x) V xe?¥” and arbitrary complex number a.

Bilinear Functional. A bilinear functional on a complex vector space ¥
is a complex-valued function ¢, defined on the cartesian product of ¥~ with/
itself such that, if

£y(x) = n,(y) = ¢(x,y),

then, for each y € ¥ ¢, is a linear functional on ¥ and, for each x € ¥; 1, is
a conjugate linear functional.

Inner Product and Orthogonality. An inner product in a complex vector
space ¥~ denoted by (x, y) is a symmetric, strictly positive, bilinear functional
on ¥/ that is, a bilinear functional satisfying (i) (x, y) = (y, x), and (ii) (x, x) >
0V non-null vectors x € ¥© An inner product space is a complex vector space
with an agreed inner product definition. In an inner product space, vectors
x and y are said to be mutually orthogonal, if (x, y) =

Reciprocal Bases (Dual Bases). Consider a. vector space of finite dimen-
sion k and let &,,..., &, and B,,..., P, be two alternative bases. One is
called the reciprocal basis of the other if (a;, B;) = 4,;, where §;; is the Kron-
ecker symbol. ;

Note that if A is a nonsingular matrix of order k, (a) the columns of A and
the columns of (A~ !)* provide reciprocal bases of & if (x,y) = y*x, (b) the
columns of A and the columns of A~ l(A y* proyide reciprocal bases of
&4 if (x, y) = y*Ax.

Intersection, Sum, and Direct Sum of Subspaces. If & and J are sub-
spaces of a vector space ¥/, the set of vectors common to both & and 4 forms
a subspace of ¥~ This subspace, called the intersection of & and 7, is denoted
by the symbol & (1 F. Here, the set of all vectors in ¥ which can be expressed
asa + B witha € ¥ and Be J also forms a subspace of ¥; called the sum
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of ¥ and 7 and denoted by the symbol & + 7. We have the dimensional
relation

A +T)+ dF NT)=dF)+ dT). . (L11)
Since the null vector is a necessary constituent of every subspace, & N I
will always contain the null vector. If & N J is a single vector set consisting

only of the null vector, & and 7 are said to be virtually disjoint and the
sum of & and 7 is called the direct sum and denoted by the symbol & @ 7.

Orthogonal Subspace. Let ¥ be a vectorspace with a proper inner
product defined for all pairs of vectors in ¥- If & is a subspace of ¥; the set
of all vectors in ¥ that are orthogonal to every vector in . forms a sub-
space &+ called the orthogonal complement of & (in ¥~ ) We have the
dimensional equality -

d&) + dF*) = dY). , (1.1.2)

The orthogonal complement of .#(A) in £™ is denoted by O(A). Al denotes
a matrix such that

HA(A) = O(A). (1.1.3)

- Unless it is otherwise clear from the context, the columns of A* are assumed
to be linearly independent.

" Projection Operator

A general treatment of projection operators is given in Chapter 5. However,
a special class of projection operators needed in the discussion of generalized
inverse of a matrix considered in Chapter 3 is described here. Let Abem x n
matrix. We shall call a matrix P, a projection operator onto #(A) with
respect to a n.n.d. matrix M iff

P,xe #(A), Vxedé™
(x — Px)*M(x — P,x) < (x — Ay)*M(x — Ay), Vxed™ yeds"
(1.1.4)
It is easy to see that the conditions in (1.1.4) are equivalent to
PIMP, = MP,, MP,A = MA, and R(P,) = R(A), (1.1.5)

where R(X) indicates the rank of the matrix X. If M = I, the conditions
(1.1.5) reduce to o

P:=P,, ‘Pt =P,

: (l.i.6)
P,A=A, R(P,) = R(A).
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If M is p.d., the conditions (1.1.5) reduce to

Pﬁ =Py, (MP,)* = MP,,

PA=A, R(P,) = R(A).

(1.1.7)

Adjoint Matrix (Transformation)

Let A be a m x_n matrix or a transformation mapping &" into &™. If
x € £", then the transformation is written y = Ax, ye&™. Let (-,-),, and
(-, ), denote inner products in & and &”, respectively. The adjoint matrix
of A, denoted by A*, is defined by the relation

(AX, 2),, = (x,A%2z), for all xe ", ze &™ (1.1.8)

By definition, if A is a m x n matrix, then A* is a n x m matrix.

Note that, if (y,, ¥,), = y3My,, (X, X,), = x3Nx,, where M and N are
p.d. matrices, then A*M = NA* or A* = N"'A*M. (If M and N are
identity matrices of order m and n, respectively, then A* = A*)

From (1.1.8)

(A*z,x), = (z, Ax), so that(A*)* = A. (1.1.9)

1.2 CANONICAL FORMS OF MATRICES

In this section we consider canonical reduction of matrices into simpler
forms by post- and premultiplication. For proofs of most of the results men-
tioned reference may be made to Section 1b.2 of Rao (1965).

Hermite Canonical Form
A square matrix H is said to be in Hermite canonical form if its principal
diagonal consists of only zeros and unities and all subdiagonal clements are
zero such that when a diagonal element is zero the entire row is zero, and
when a diagonal element is unity the rest of the elements in the column are
zero. Alternatively H is in the Hermite canonical form if there exists a per-
mutation matrix P such that :
I, B
PHP' = ( )

00

where r = R(H) and B could be arbitrary. A matrix H in Hermlte canonical
form is necessarily idempotent (i.e., H2 = H).

Let A be a square matrix of order m. Then there exists a nonsingular
matrix C of order m such that

CA =H, (1.2.1)

where H is in Hermite canonical form.
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Diagonal Reduction

Let A be m x n matrix of rank r. Then there exist nonsingular square
matrices B and C such that

BAC = ‘I' 0), (1.2.2)-

0 0
which give the representations .
10
A=B"! 4 (ot
00
A=DE=20d¢, +---+d¢,, (1.2.3)

where D is m x r matrix of rank r consisting of the first r column vectors
dy,...,0,0f B™"and Eisr x n matrix of rank r consisting of the first r row
vectors e}, ..., £, 0f C™!. The representation (1.2.3)is cailed the rank factoriza-
tion of A.

Householder’s Transformation

Triangular Reduction. Let A be a m x n matrix and m > n. Then there
exists a unitary matrix B of order m such that

T
BA = 24
‘o)’ (124)

where T is an upper triangular matrix of order n and 0 is a null matrix of
order {m — n) x n.

Bidiagonalization. Let A be m x n matrix and m > n. Then there exist
unitary matrices B and C such that BAC is in bidiagonal form, that is, all the
clements of BAC are zero except possibly those'in the main diagonal and the
one above (or below) it.

Spectral Decomposition

Hermitian Matrix. Let A be k x k hermitian matrix (ie, A = A#*).
Then there exists a unitary matrix U such that

A = U*AU, ‘ (1.2.5)

where A is a real diagonal matrix. If §,, ..., 8, are diagonal elements of A,
{(1.2.5) can also be written as

A=00P +- ..+ 4P, , (1.2.6)

where P} = P, PP, =0fori # jandP, + --: + P, =L
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Normal Matrix. Let A be n x n normal matrix (i.e., AA* = A*A). Then
there exists a unitary matrix U such that
A = U*AU, (L.2.7)
where A is a diagonal matrix. If é,, ..., §, are distinct diagonal elements of
A, then (1.2.7) can also be written as
A=46P + -+ 5P, (1.2.8)
where PZ = P,,PP;=0for i # j and P, + --- + P, = I. Thus a normal
matrix is unitary congruent to a diagonal matrix.

Commuting Hermitian Matrices. Let A, and A, be two hermitian mat-
rices such that A;A, = A,A,. Then there exists a unitary matrix U such
that

A, =U*A\U A, =U*A,U, ©(1.29)
where A, and A, are diagonal matrices.

Singular Value Decomposition. Let A be a m x n matrix of rank r. Then
there cxist two unitary matrices U of order m and V of order n such that

' A O
U*AV = 0 , (1.2.10)
where A is a diagonal matrix of rank r with real elements, all of which are
positive.
From (1.2.10) we have
A = EAF*, (1.2.11)

where E*E = I, = F*F. If §,,..., 5, (not all of which need be distinct) are
the diagonal elements of A, €y,...,e,are the columns of E,and f,, .. ., f, are
the columns of F, then (1.2.11) can be written as

A=0eff + -+ 5eft (1.2.12)

We note that 97, ..., 8} are the common positive eigenvalues of AA* and
A*A, ¢, is the eigenvector of AA* corresponding to &7, and f; is the eigen-
vector of A*A corresponding to 5Z. The vectorsee,, ..., e, are orthonormal
andsoaref,,...,f.

Simultancous Singular Value Decomposition. If A, and A, are two
m X n matrices, there exist two unitary matrices U and V such that
L 4

A, O A, 0)
U*A V = N U‘A v = s WA
ot ‘0 o) 2 ,(0 0 (12 13)
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where A, and A, are both diagonal matrices with real elements; A, has no
negative elements if and only if A; A% and ATA; are both hermitian matrices.

Singular Value Decomposition with Respect to M and N. Let A be a
m x n matrix of rank r and M and N be p.d. matrices of orders m and n,
respectively. Then A can be expressed in the form

MAN = #lél"? + -t urérn:: (12]4)

where E¥M ™8, =0 for i #j and =1 for i = j, and #W!N~'n; = 0 for
i#jand = lfori=j.

In (1.2.14) y2.. .., u? are the nonzero eigenvalues of A*MA with respect
to N™ " or of ANA* with respect to M~ !, &, is the eigenvector of ANA* with
respect to M ™! corresponding to the cigenvalue u?, and w; is the eigenvector
of A*MA with respect to N™! corresponding to the eigenvalue 42,

Polar Reduction. Let A be a square matrix. Then there exists a n.n.d.
matrix G such that

A = HG, H unitary. (1.2.15)

In fact, G is the hermitian square root of A*A. H is unique if |A] # 0.
Similarly, A = FH, where H is unitary and F is the hermitian square root
of AA*.

Polar Representations. A complex orthogonal matrix M can always be
represented in the form

M = R, © o (1.2.16)

where R is real orthogonal and K is real antisymmetric. A unitary matrix
U can always be represented as

U = Re®, (1.2.17)

where R is real orthogonal and S is real symmetric.

1.3 CHARACTERISTIC FUNCTION, MINIMUM POLYNOMIALS
With every square matrix A of order n is associated the matric polynomial
A - A, (1.3.1)

which is called the characteristic matrix of A. Its determinant is a polynomial
indr :

SR =1L — Al = 2"+ ¢y " ' 4 en 4 € (132)
called the characteristic function of A. The equatidn J(A) = 0 is called the:



