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PREFACE

AccorpING to the Copenhagen philosophy, the physical predictions of a
quantum theory must be formulated in terms of classical concepts. Thus, in
addition to the traditional structure of Hilbert space, unitary transform-
ations, and self-adjoint operators, a sensible quantum theory must contain a
prescription for going over to the classical limit and for relating the
quantum mechanical observables to those of the corresponding classical
system.

However, as Dirac stressed in the early days of quantum theory (Dirac
1926), the correspondence between a classical theory and a quantum theory
should be based not so much on a coincidence between their predictions in
the limit # — 0, as on an analogy between their mathematical structures: the
primary role of the classical theory is not in approximating the quantum
theory, but in providing a framework for its interpretation.

In the simple systems that one first meets in elementary quantum
mechanics, the correspondence is based on canonical quantization: a
classical observable—represented by some function f(p,, g4°) of the canoni-
cal coordinates—is associated with the quantum mechanical observable

represented by the operator
é
—ih—.q").
f( " o q)

This formal substitution raises many problems: for example, except in the
simplest cases, the quantum observable depends on the ordering of the p,s
and ¢’s in the classical expression for f; the quantization depends critically
on the initial choice of coordinates and it is not invariant under general
canonical transformations; and the domain of the operator is left un-
determined by such a formal expression. Nonetheless, judiciously sup-
plemented with physical intuition, canonical quantization and its various
generalizations have been remarkably successful.

The mathematical questions remain, however, and, although they are
relatively easy to answer for simple systems in Euclidean space, they are
very much harder when the classical system involves constraints or contains
particles with internal degrees of freedom.

The particular question that geometric quantization attempts to answer
is: to what extent is canonical quantization a well defined mathematical
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procedure and to what extent does it depend on the choice of canonical
coordinates?

At one level, one can regard geometric quantization as a straightforward
analysis of the various structures needed for the quantization of a classical
system; for example, these might be preferred symmetries or special classes
of coordinate systems. The aim is not to introduce new physical ideas, but to
unify and clarify the various forms of canonical quantization and to make
precise the analogies between the structures of classical and quantum
theories. Starting with a classical phase space, represented by a symplectic
manifold, one looks for a geometric, coordinate-free construction for the
Hilbert space and observables of the underlying quantum theory: with no
explicit dependence on a particular coordinate system. such a construction
can be expected to give a very clear insight into the ambiguities involved in
passing from the classical to the quantum domain.

At a more ambitious level, on the other hand, one can apply geometric
quantization to systems with no special symmetries, in which the traditional
forms of canonical quantization cannot be used in the obvious way; for
example, to systems in curved space—time. Here a slightly different interpre-
tation is needed: there is no one preferred quantization, but a whole family;
and these agree with each other, and, presumably, with the underlying true
theory, only in the semiclassical limit. In other words, here one must think
of quantization as an approximation, giving only an incomplete picture of
the real physics.

This book is a survey of the constructions and applications of geometric
quantization, beginning with an account of symplectic geometry and the
geometric formulation of Hamiltonian mechanics. (I assume that my reader
has some familiarity with coordinate-free differential geometry and at least a
passing acquaintance with quantum theory and Hamiltonian mechanics: the
notation and some less familiar mathematical ideas are explained in the
Appendix.) _

I should like to stress three points: first that this is a book about
quantization and not about quantum theory. The geometric method is
developed not as a substitute for the normal analytic method of quantum
theory, but a means of understanding more clearly the relationship between
classical and quantum mechanics. Secondly, this is a work of applied, not
pure mathematics. Although the mathematical ideas are fairly sophisticated,
I have made no attempt to develop them beyond their immediate appli-
cations and, without, I hope, glossing over any essential difficulties, I have
made no attempt to be completely rigorous. Also, I have tried not to use
abstract geometric arguments in places where coordinate-based calculations
are simpler and quicker. Thirdly, I should stress that the ideas presented
here are not original. However, they seem to me to be sufficiently important
to justify this account of them, which, I hope, will complement the work of
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others. The principal published sources are: Blattner (1973), Guillemin and
Sternberg (1977), Kirillov (1976), Kostant (1970), Mackey (1963), Onofrn
and Pauri (1972), Segal (1960), Simms (1968), Souriau (1970), and
Weinstein (1977). Also, I have been heavily influenced by unpublished
lectures and notes by F. A. E. Pirani (in Chapter 2), D. J. Simms (in
Chapter 3), B. Kostant (in Chapter 4), J. H. Rawnsley (in Chapter 6), and
R. Geroch (in Chapter 7).

Finally, I should like to thank M. G. Eastwood, K. C. Hannabuss, L. P.
Hughston, R. Penrose, S. P. Pratt, J. H. Rawnsley, and D. J. Simms for
helpful comments and suggestions, and Ina Godwin for her help in typing.

Wadham College, Oxford N.M.J.W.
October 1979
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1
SYMPLECTIC GEOMETRY

1.1. Symplectic manifolds

THE basic object in the geometric formulation of Hamiltonian mechanics is
the symplectic manifold (1).This is a pair (M, w) in which M is a smooth
manifold and w is a closed, nondegenerate 2-form defined everywhere on M.
In other words,

dw=0 (1.1.1)
and the map
TMo>TIM:X—X lw (1.1.2)

i1s a linear isomorphism at each m e M. It is sometimes helpful to think of &
4s an antisymmetric metric on M; then (1.1.2) corresponds to ‘lowering the
index’ on X,

To begin with, we shall deal only with finite-dimensional symplectic
manifolds. In physical terms, this means restricting attention to systems
with only a finite number of degrees of freedom. Infinite-dimensional
symplectic manifolds (representing, for example, the phase spaces of systems
of classical fields) are much less straightforward objects and their study is
complicated by some subtle technical questions. For example, there are a
number of different forms of the nondegeneracy condition (1.1.2) and for
infinite-dimensional manifolds these are not all equivalent; in field theory,
this is related to the analytic problem of exactly which set of solutions of the
field equations should be used to construct the classical phase space and of
what topology this set should be given. A discussion of these and other
matters will be postponed until Chapter 7.

I shall begin the formal development of finite-dimensional symplectic
geometry by recalling some elementary facts about symplectic vector spaces
and their symmetry groups.

1.2. Symplectic vector spaces

Let (V, w) be a symplectic vector space: in other words, V is a finite-
dimensional real vector space and w is an antisymmetric, nondegenerate
bilinear form on V. Thus,

wX,Y)=-w(Y,X): X,YeV (1.2.1)
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and
X Jw=0 if and only if X =0. (1.2.2)
(The example to keep in mind is the tangent space at some point of a
symplectic manifold.)
The first fact that we shall need is that it is always possible to find a
symplectic frame in V. This is a basis {X',X?,..,X", ¥,, ¥,,..., ¥,} (where
n=3dim V) with the property that

20(X4, Y,)=684  a=1,2,..n. (1.2.3)

The proof is a straightforward modification of the familiar Gram -Schmidt
construction: we start by introducing an arbitrary basis {Z,.Z,,.. 2 N
(N =dim V) and putting

1:ZI and YE:%(w(Zlazu))_lzu (Z) {1'2'4)
where a is the least index such that w(Z,,2,)#0 (a exists since w is
nondegenerate). Next, we define Z,, Z,...., Z._, by

Z~b=Zb+1+2w(Y1aZb+1)X1
—2w(X',Z,,)Y; b=1,2,...,a-2

=Zyr+20(Y, Zy )X
—20(X',Z,,,)Y i b=a—1,.,N-2 (1.2.5)
Then {X',Y,,Z,,Z,,.,Zy_,} is again' a basis and
oX', Z)=w(Y,,Z,)=0: b=1,2.. . N—-2. (1.2.6)

Repeating the process, putting X?=Z, and so on, we arrive after n=1iN
steps at a symplectic frame. (This argument also shows that every symplectic
vector space, and hence every finite-dimensional symplectic manifold, is
even-dimensional.)

The set of all symplectic frames in V is acted upon transitively (on the
right) by the symplectic group SP(n, R), which is the (2n% + n)-dimensional
subgroup of GL(2n, R) of matrices of the form

ct D
M=[E:b F:”] (1.2.7)
b

where (C,*), (D,,), (E®*), and (F “y) are nx n matrices satisfying
CrFe —E®D, =8, CPE®=E®C [, D F =FD,. (128)

(Here, and below, I am using the range and summation conventions for the
indices a, b, c,... running over the values 1,2,...,n; the significance of the
positioning of the indices will emerge shortly.} Explicitly, the action is given
by

M:{Xe Y, )= X 7} ={XCA4 Y.E®, XDy+ Y.F,). (129)



ferometer shown in Fig.1.2, in which Ml and MZ are mirrors, and L a half- ™
silvered plate (a more detailed description of the equipment is found in
[1.11). Let v be the earth's translational velocity, oriented as shown. Ac-
cording to the aether model, rays 1 and 1' have velocities (c -v) and (c +v)
with respect to the interferometer. The total "time of flight", from O to B
and back to 0, is therefore

0 08 .08 .|

B T
Salh R s RS

(1.5)

A y
FMz
21 '2
‘ B
T
!
SN 3 M
2’“ ‘1 !
—_—
Fi I 2. Sketch of the M1chelson- ?i .1.3. Relevant to the estimation
Moriey experiment of a travel time interval

To determ1ne the:time of flight of rays 2 and 2'y; we must take into account
the perpendicular displacement of the interferometer during the time of flight.
A look at Fig.1.3 shows that the travel time from 0 to A and back to 0 satis-
fies - %

t, =% 4 A0 =2 Jiora)? s (ity2)? L (1.6)

The travel time tz is therefore
0A ;

t =—2- = v (1'7)
S e ;q - véfc2

" As the translat1onal veloc1ty of the earth at the location of the experiment
is of the order of 300|us , the ratio v/c is exceedingly smal] and the %
difference of time 1ntervals of flight can be written, to a good approxima-
tion, as
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2. Two Lagrangian subspaces H, K< V are said to be transverse when-
ever H n K=1{0}. The subgroup of SP(V, w) of linear canonical transform-
ations p: V' — V with the property that

p(H)=H and p(K)=K (1.2.16)

is then denoted GL(H, K).

Given two transverse Lagrangian subspaces H and K, we can use the
bilinear form w to identify H with K* by associating X € H with a, e K*
where (2)

ay(Y)=2w(X, Y); YeK. (1.2.17)

The map X > ay is clearly linear; it is also bijective since we have

Lemma 1.2.1. Let K=V be a Lagrangian subspace. Then X € K if and only
ifw(X, Y)=0VYeK.

(The proof is a straightforward dimensional argument.) Thus if X ¢ H and
ay=0, then X € K, which implies that X =0 since H and K are transverse.

If {Y,} is a basis in K and {X*} is the dual basis in H, then {X* Y,}is a
symplectic frame. Using this to identify SP(V, w) with SP(n, R), GL(H, K )
becomes the group of matrices of the form

M= Ly 0 where LYIs =8° (1.2.18)
=10 Lo, e sLe. =80 2.
This in turn is isomorphic with GL(n, R).
3. A linear canonical transformation J: ¥V — V' that satisfies J2= —]

(where 1 is the identity) is called a compatible complex structure on (V, w).
Associated with J there is the bilinear form

gX,Y)=2w(X,JY); X,YeV, (1.2.19)
which is symmetric since
(X, JY)=w(JX,J?Y)=-o(JX, Y)=u(Y, JX); (1.2.20)

J is said to be positive whenever g is positive definite.
The subgroup of SP(V, w) of linear canonical transformations p: V — ¥
that satisfy

pJ=Jp (1.2.21)

is denoted U (J).

If {X? Y,} is a symplectic frame and (g,,) is any symmetric nonsingular
n X n matrix, then we can define a compatible complex structure J by

JX*=g?Y,, JY,=—g,X"® (1.2.22)

where g*°g,.=d¢; J is positive whenever (g,,) is positive definite.
Conversely, given a compatible complex structure, J, it is possible to find
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a symplectic frame {X ¢, Y, } such that J is determined by (1.2.22). To prove
this, we first note that J gives V the structure of a complex n-dimensional
vector space with an indefinite inner product: scalar multiplication by
z=x+iy e C is defined by

X=xX+yJX; XeV (1.2.23)
and the inner product is
X, Yy=2[w(X,JY)—in(X,Y)}; X,YeV (1.2.24)

(this is linear in the first entry and antilinear in the second; it is always
nondegenerate and it is positive definite whenever J is positive). It is
possible, therefore, to find n vectors Y,, Y,,..., Y, that form a basis for ¥ as
a complex vector space and which satisfy

Yo, V=g, (1.2.25)
where
(gawp)=diag(l, 1,... I, =1, — 1L,..., —1), (1.2.26)

with k ones and n— k minus ones, according to the signature of ¢.,.>. Thus
if the X %s are defined by

X*=—g®*JY, where g®g, =062, (1.2.27)

then {X“, Y,} is a symplectic frame with the stated property.
When this is used to identify SP(V, w) with SP(n, R), U (J) becomes the
subgroup of SP(n, R) of matrices of the form
gacAcdgbd _gachb
M= 1.2.2
[ Badgdb Aab ( 2 8)
where (4% +iB*,) is a pseudo-unitary matrix; thus U (J) is isomorphic with
the pseudo-unitary group U(k,n—k). In particular, when J is positive,
ga=0, and (A% +iB%) is unitary. [

Thirdly, we need some facts about various special subspaces of V. Given a
subspace F <V, the annihilator of F is defined to be the subspace

FO={XeV;wX,Y)=0YYeF). (1.2.29)
The basic properties of the annihilator are contained in the two lemmas:

LEMMA 1.2.2. Let F, G V be subspaces. Then

(@) F°>G° whenever Go F

(b) (F°)°=F

() (F+G)°=F°~ G°

(d) (FAGY=F°+GO°.

Proof. The first statement is obvious and the second follows from the fact
that F<(F°)° and dim F°+dim F=2n. To prove statement (c), note that if
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X e F% A GO, then
o(X.Y)=0VYeF+G (1.2.30)

so that X € (F+G)°. Thus F® n G°<(F+ G)°. Conversely, since Fc F+G
and GcF+G, we have F°>(F+G)° and G°>(F+G)°. Therefore,
F°n G°>(F+G)° and hence FO n G°=(F +G)°. Finally, using (b) and
(c),

(F°+G%°=(F°)° N (G°)°=FnG. (1.2.31)

Hence, using (b) again, (F n G)°=F°+ G°, which proves (¢). O

LEmMA 1.2.3. Let FcV be a subspace and let V' =F/(F n F°). Then w
projects onto a bilinear form o’ on V' and (V', ') is a symplectic vector space.
Proof. Let p: F - V' denote the projection. Then ' is defined by

o' (X', Y)=w(X, Y) (1.2.32)

where X, Ye F and X' =p(X ) and Y '=p(Y). This is clearly well defined,
skew-symmetric, and nondegenerate. []

A subspace F< ¥V is said to be

(a) Isotropic whenever Fc F9;
(b) Coisotropic whenever FOc F;
(c) Symplectic whenever F n F°={0}.

In the first case, dim F <n; in the second, dim F >=n; and, in the third, dim F
is even. If F is isotropic, then F° is coisotropic, and conversely. Also, F is
Lagrangian if and only if it is both isotropic and coisotropic (and therefore
n-dimensional). Note, however, that these categories are not exhaustive: it is
possible for a subspace to be neither isotropic, nor coisotropic, nor
symplectic.

Finally, we note that these ideas have obvious extensions to the complex
case: a complex symplectic vector space is a finite-dimensional complex
vector space W on which there is given a complex valued nondegenerate
bilinear form o. (In the example that we shall meet most frequently, W is the
complexification of a real symplectic vector space ¥, and o is defined by
linearly extending the symplectic form on V.) The annihilator F° of a
complex subspace F < W is defined as before and we say that F is complex
isotropic, complex coisotropic, complex Lagrangian, or complex symplectic as
FcF° F°cF, F°=F, or F n F*={0} (but again the categories are not
exhaustive). Lemmas 1.2.2 and 1.2.3 also hold for complex subspaces.

More details about symplectic linear algebra can be found in Souriau
(1970), Kirillov (1976), Dixmier (1974), Weinstein (1977), and Guillemin
and Sternberg (1977).
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1.3. Darboux’s theorem

One of the most important examples of a symplectic manifold is the
cotangent bundle M = T*Q of an n-dimensional manifold Q. This is the set
of pairs (p. q) where g € Q and p is a covector at g. It is made into a manifold
by using as coordinates the set of 2n functions {p,, ¢"} where the g°s are
coordinates on Q and the p,s are the corresponding components of the
covectors p. ({p,, q°} is called the extension to T*Q of the coordinate system
f hl')
ﬁwj symplectic structure on M is the canonical 2-form «» defined by

w=dp, ndq". (1.3.1)

There is also an intrinsic construction for « which gives a simple way of
seeing that it is, in fact, independent of the coordinates ¢°: let n: M — Q
denote the projection map (p, g)—q and, for each m=(p, q) € M, define
0,.€ TEM by

X 16,=(nX)1p; XeT, M. (1.3.2)

As m varies, § becomes a smooth 1-form on M (called the canonical 1-form),
which is given in the coordinates {p,, g°} by

0=p,dq". (1.3.3)
Thus w is also determined by

w=d6 (1.3.4)

without reference to any particular coordinate system on Q. Clearly w is
closed (since it is also exact) and nondegenerate.

In the typical physical applications, Q is the configuration space of some
mechanical system (such as a collection of particles subject to holonomic
constraints) and 7*Q is the phase space of the system.

The cotangent bundle is a fundamental example since all symplectic
manifolds have this form locally, as follows from Darboux’s theorem (3)

Theorem 1.3.1. Let (M, w) be a 2n-dimensional symplectic manifold and

let me M. Then there is a neighbourhood U of m and a coordinate system
(P 4"} (a,b=1,2,....n) on U such thar wly,=dp, Adqg°.

The following proof is due to Weinstein (1971) and it is based on a
suggestion of Moser’s. The key step is a lemma of Moser’s (1965).

Lemma 1.3.1. Let w and o be two closed, nondegenerate 2-forms on a
manifold M and let me M. If w,,=a,,, then there are neighbourhoods U and V
of m and a diffeomorphism p: U — V such that pm)y=m and p*(c)=w.

Proof. Since d(6 —w)=0, there is a 1-form « defined on some neighbour-
hood W of m such that

de=0—w. (1.3.5)
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By adding the gradient of a scalar to « (if necessary), we can ensure that
o, =0.
Put
N=Wx[0,l]={(x,t);xe W,te [0, 1]} (1.3.6)
and define a closed 2-form Q on N by
Q=pr¥(w)+t pr*(c—w)+dr A pr¥(a) (1.3.7)

where pr: N - W is the projection onto the first factor. For each r € [0, 1],
put

Q=Qly,  =w+t(oc-w) (1.3.8)

(there is a minor abuse of notation here: we are identifying W,= W x {t}
with W). Then, at (m,t)e W,, Q,=w. Hence, provided that W has been
sufficiently restricted, each Q, is nondegenerate. It follows that there is a
unique vector field X on N such that

X _Jdt=1 and X 1Q=0. (1.3.9)

For each x e W, let 1+, (1) be the integral curve of X through (x,0).
Then the first of the equations in (1.3.9) implies that ¢ (1) € W x (¢} for each
value of t for which ¢, is defined. Also, since %,, =0,

@m(t)=(m,1) (1.3.10)

for every ¢ in [0, 1]. Hence there is a neighbourhood U of m such that ¢ _(t)
is defined for each x € U and for each re [0, 1].
Now

LyQ=X 1dQ+d(X 2Q)=0. (1.3.11)
Thus if p: U - V=p(U)= W is the diffeomorphism determined by
(p(x), N)=9.(); xeU (1.3.12)

then p*(Q2,)=Q,. Also, from (1.3.8), Q, =0 and Qy=w and, from (1.3.10),
plm)=m. O

Proof of Theorem 1.3.1. Let {z!,z2,...,z*"} be a coordinate system in
some neighbourhood of m. Then the coordinate vectors form a basis for
T.M and it follows from the discussion in §1.2 that we can find a linear
transformation {z',..., 22"} = {r , ry,.... 7, 8%,..., 5"} of the coordinates such
that the new coordinate vectors
i Yy= s (1.3.13)

X9=
cs

= y
or,

form a symplectic frame at m. Thus if we take

o=ds, A drf (1.3.14)



