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PREFACE

The first concern of Euler, Legendre, Jacobi, Weierstrass, and other mathe-
maticians who pioneered in the study of the calculus of variations was to
characterize differentiable mappings x — g(z) of a finite interval [a,b] into
R™ (m = 1, or 2) which afforded a minimum to an integral of the form

b
(h ff(z,ylw--,ym;yi,»--;y;l)dx

relative to values of this integral along mappings  — y(x) neighboring g
which satisfied simple boundary conditions. Under conditions on f, g and the
mappings  — y(z) neighboring g, which will be made explicit, the mapping
x — g(x) satisfies the Euler equations and has a graph that is called a
minimizing extremal.

However, it has become increasingly evident that the restriction of the
calculus of variations to a study of minimizing extremals is not only un-
natural but fails to respond to present needs of mathematics in analysis,
differential geometry, mathematical physncs and engineering. This is
transparent in global and differential topology. It is hoped that the theorems
and methods of this book will make this equally clear in analysis, in par-
ticular in that branch of analysis which is concerned with extensions of
Sturm separations, comparison, and oscillation theorems.

Apart from the development of Sturm-like theorems in my Colloquium
Lectures, most applications of variational methods to the Sturm theory have

been restricted to the case m = 1, where m is the number of variables
Y1, ..., Yn in (1). This is the case of one linear second-order differential
equation. In the case m = 1, A. Kneser, Leighton, Nehari, Reid, Howard,

and others have effectively used variational methods. In the case m = 1,
much attention has also been given to linear, homogeneous DE (differential
equations) of the third or fourth order. A book by Swanson summarizes
these results and contains an extensive bibliography. It is my belief that when
the systematic carrying-over of the methods of this book to the general
Bolza problem is completed (as it can be), much light will be thrown on DE
of orders higher than the second.
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Among the exceptions* to the special emphasis on the case m = | was
the comprehensive paper by Birkhoff and Hestenes in 1935. These authors
confirmed some of the principal new theorems that were presented in my
Colloguium Lectures of 1932. An exception is a well-known theorem that
identifies the least characteristic root 4, of quadratic functionals 7 — (%),
associated with the second variation, with the minimum value of I2(7), under
the condition that the norm |jn)l = 1. See Hilbert-Courant [1]. We shall
replacet this characterization of 2, by our Index Theorem 15.2. This theorem
effectively characterizes not only” 2, but each characteristic root 4,. In
particular the classical characterization of Z; is confirmed in Corollary 16.2
as a consequence of the Index Theorem and extended to the case in which the
coefficients of the underlying quadratic form

(2) 2("(‘1,7]3() = le(x)?)l{"}; + ZQU(Z)W:"L + Pii(m)ni'rlj

are required to be no more than continuous.

From my point of view, the principal object of study in variational analysis
should be the study of the origin and nature of critical extremals, including
the study of minimizing extremals as a special case. A critical extremal is
defined as a finite extremal arc that satisfies the transversality conditions
associated with the prescribed boundary conditions. See Definition 9.1.

In addition to the study of minimizing extremals we shall emphasize two
principal applications of variational analysis:

1. Variational topology
2. Quadratic functionals

Variational topology includes and extends differential topology. In
variational topology extremals replace the geodesics of differential topology
and the topology of the underlying space enters strongly.

The quadratic functionals studied extend the functionals given by the
classical second variation. In the “free™ form that we give them in Section 15
they are more general than the classical or “derived” second variation. It
is a main thesis of this book that Sturm-like separation, comparison, and
oscillation theorems are best understood and extended as by-products of a
variational study of the relevant quadratic functionals. The study of quadratic

* Also exceptional are paper [2] and book [3] by W. T. Reid.

1 In Part V a general structure underlying the theory of characteristic roots is introduced.
We follow Sturm and Liouville (see Bocher, Méthodes de’ Sturm) in allowing the charac-
teristic parameter % to enter very generally. both in the integrand of the quadratic functional
and in the boundary conditions. An Index Theorem 33.5 still holds, even when 7 does not
cater linearly, and serves to characterize roots 4, including the least characteristic root
4y. A characierization of 7, with the aid of a simple isoperimetric condition does not scem
possible in the gencral case.
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functionals, as we shall restrict them, will turn out to be the study of a general
system of m nonsingular, selfadjoint, linear, homogeneous, secend-order
DE under the most general selfadjoint boundary conditions. See Sections
30 and 31.

It would not be poss:ble to present an extendr | vanauonal theory had not
the classical theery been so well built by men such as Bolza, Bliss, Hadamard.
Kneser, Mayer, von Escherich, Carathéodory, Tonelli, and their pupils. To
these names we add the names of present-day expositors such as Hestenes
and Gelfand. The contributions to the theory “in the large” by mathema-
ticians such as Deheuvels, Milnor, Serre, Pitcher, Herman, Palais, Bott,
Ljusternik, Snirelman, and Smale should be recalled. The lectures by L. C.
Young on the “Calculus of Variations and Optimal Control Theory” cover
important novel aspects of the theory which, fer the sake of brevity and
clarity, are not included. In my second volume on Variational Topology other
names will be cited.

After summarizing and refining the relevant classical theorems on the
minimizing extremal this book extends and organizes in a new theory the
theorems on ‘“‘critical” primary and secondary extremals. Theorems on
critical secondary extremals take the form of a variational study of quadratic
functionals that includes extensions of the Sturm theory. An indication of
the methods and technical innovations is given in the Introduction.

I am indebted to Professor George Kozlowski, Professor Ping-Fun Lam,
and Professor Everett Pitcher for their critical reading of the text and helpful
suggestions, and to Miss Caroline Underweod for her very skiliful prepara-
tion of the manuscript.

MARSTON MORSE

Princeton, Néw Jersey
May 1972
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Introduction

We shall single out from each chapter special theorems or concepts which are
particularly significant and indicate in what respect they are significant._
These comments should be read after reading the chapter in question but
before reading the following chapter.

CHAPTER 1. Under the conditions of Theorem 7.4

2

W ' fx w(zn(x).q'(z)) dx > 0.
Classical proofs of this theorem require that the mappings,
(2) = Ryl@), xr— Q,(x). - x—P;)

of [a',a?] into R be of class C. It suffices that the mappings (2) be continuous.
Similar remarks should be made concerning the remaining theorems of
Section 7. These Theorems affect the whole body of Sturm-like theorems.

CHAPTER 2. Let C, be general end point conditions of Section 8 with
r > 0. The functional (J,C,),whose values J(y.~) are given by (8.19). is the
sum of an integral and an “external” function @ whose values () are
determined by the end points (X*(a), Y(a)) and (X3*(«), Y*(a)) of the graph
of 7.

Theorem 10.1 shows that the second variation of (/,C,) whose. values are
given by the right member of (10.13) has a similar structure. The second
variation is the sum of an integral and of an external quadratic form by, i4u,
where the r-tuple u = (u,, . . . , u,) is uniquely determined, as (10.14) shows,
by the end points of the graph of the “variation™ 7.

This similarity of structure of (J,C,) and its second variation motivated
the choice of the representation (8.19) of the functional (J,C,) and our
definition (10.23) of the basic quadratic functional n — £ (%).
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CHAPTER 3. With each critical extremal g of (J*,C,), Definition 14.2
associates a quadratic index form Q* whose index (Theorem 14.1) equals the

“count” of negative characteristic roots of Conditions (11.8), when r > 0,
and of conditions (12.2) when r = 0. This index form is termed derived
because its definition depends on an antecedent critical extremal g. It is
replaced in Section 15 by a similarly structured free index form whose
definition is independent of any antecedent critical extremal g.

In the problem of relating the geodesics g joining two fixed points A and B
on a differentiable manifold M, to the homological characteristics of M, a
derived index form is associated with each geodesic g joining A4 to B, and
enables one to assign local homological characteristics to each g. This will be
elaborated in our second volume on *‘variational topology.” See the analogous

treatment of critical points of a nondegenerate function f on a differentiable
manifold. Morse and Cairns [1].

CHAPTER 4. Conditions W,(1) cembine the Jacobi differential equa-
tions with boundary conditions 0 < r < 2m. For each 4 € R, conditions
W.(2) : (15.0) are uniquely determined by giving w*(z,7,{) as in Appendix I,
by prescribing a 2m X r matrix |ic,|l of rank r and an r-square symmetric
““comparison’ matrix* ||by,|. If 4 ranges over R, a system of conditions W,(1)
in which the matrices ||¢,|| and ||b,,]| remain invariable, is called a canonical
system W, of dimension r.

With each system W, and value o € R there is associated, by Definitions
15.1 and 15.2, respectively, a quadratic functional I : (15.2) and a free
index form Q°, whose index and nullity are equal (Theorem 15.3) and are
given by Index Theorem 15.2. A nonnull selutien of conditions W,(c) has a
graph which is a “critical extremal” of I7. Sturm-like theorems result from a
study of critical extremals of 7. The index form Q° is a technical aid in this
study. The exceptional case r = 0 is also considered.

CHAPTER 5. "The focal points of free focal conditions ¥, : (17.6) and
(17.7) are introduced in’ Definition 17.4. The Focal Point Theoremt 17.3
gives the “‘count” of focal points of V,, r > 0, in terms of the characteristic
roots of a special canonical system #; determined by ¥, in Definition 17.6.
When r = 0, Theorem 17.3 (restated as Theorem 17.4) gives the count of
conjugate points of z = a', at z = a? or in (a',a®) in terms of characteristic
roots of the canonical system W, of Conditions (15.1).

In Section 18 the theory of focal points is identified with the theory of von

* The matrix ||b,, || is called a comparison matrix because of the basic role it plays in the
extended Sturmian Comparison Theorems.

t The Focal Point Theorem was first given on page 61 in Morse [1].
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Escherich families of-.‘frputually conjugate” solutions of the systeni of DE

d .. N
3 ;; m“‘(:t,q,q ) = ‘”m(z:”"}) (i=1...,m)
and léads to otir Separation Theorem.

CHAPTER 6. ~The “Extended Separation* Theorem” 20.1 implies the
classical Sturm Separation Theorem when m =1 and replaces it when
m > 1. It affirms the following. If two von Escherich families F and F of the
DE (3) have exactly p lmearly independent solutions in common; then the
“count” of focal points of F in any refatively compact subinterval = of R
differs from the corresponding count for £ by at most m — p.

In Section 21 we compare the focal points in an interval (a!,d] of - two sets
of focal conditions V, and P,, as defined in (17.6) and (17.7). Whenr = p =0
the comparison reduces to a comparison of conjugate points. In our first
comparison theorem, Theorem 21.1, the hypotheses, when m =1, are
-similar to classical hypotheses. When m = 1 certain classical theorems such
as Reid’s Theorem (Theorem 1.29 of Swanson) are extended in Section 22.
Our second comparison theorem is the Nuclear Comparison Theorem 21.4.
It has hypogheses which are definitely weaker than those’ of Comparison
Theorem 21.1 but imply the same conclusions. When m = 1 Leighton’s
Theorem (Theorem 1.4, page 4 of Swanson) is of the same nature as our
Nuclear Comparison Theorem. Leighton’s Example 1, on page 6 of Swanson,
is used by us for the same end. See Sectlon 21.

CHAPTER 7. The Oscillation Theorem 24.1 differs in character from
the classical oscillation theorems to which we shall turn m Section 37
Theorem 24.1 gives the exact value of the difference

[e)) index W, — index W, (r>0)

where index W, denotes the count of negative characteristic roots of a
canonical system W, for which 4 = 0 is not a characteristic root, and index
W, denotes the count of conjugate points of z = a! in (@*,a?) of the underlying
DE (3). The proof of Theorem 24.1 depends upon an auxiliary theorem,
Theorem 25.1, on quadratic forms, proved in Appendix II. Many other
applications of Theorem 25.1 exist. We apply Theorem 24.1 to the *“‘periodic
case,” as defined in Section 27

* The Extended Separation Theorem was first given as Theorem 7 in Morse [2] and later
as Theorem 8.3 on page 104 of Morse {1].
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CHAPTERS. In $ection 29, general selfadjoint BC (boundary conditions)
associated with pesssribed selfadjoint DE are defined, as well as the eguio-
alence (Definiion 29.1) of any two such sets of BC. Theorem 31.1 then
implies that an arbitrary set of selfadjoint BC with an accessory r-plane ,,
(Definition 31.1), is equivalent, when r > 0, to some set of BC of form (29.1).
When r = 0 it is trivial that selfadjoint BC are equivalent to the conditions,
n(a') = 7(a*) = 0. The Conditions (15.0) and (15.1) are selfadjoint, and
(up to an equivalence of BC) are general in form, as we show in Section 31.

CHAPTER 9. The general sttems W, of canonical conditions W,(1) -
introduced in Section 32, include the systems W, of canonical conditions
W.(2) of Section 15 as special cases. Theorem 34.2 gives necessary and suffi-
cient conditions that a system W, have infinitely many characteristic roots.
It is a corollary that the canonical systems W, of Section 15 have infinitely
many such roots. v

In Section 37 Oscillation Criteria are given in a set of theorems whose
proofs will be presented in a separate paper. A set of DE of the form (3) is
given for z € (0, o) and conditioned as in Appendix I. The DE are termed
oscillatory if the point # = 1 has infinitely many conjugate points following
z = 1. A D-mapping = — y(2) : [I,0) — R™ is called a thread and the
condition that

) ' lim inf f “o(a, @)y (@) d = —
. 2too 1

a thread condition.

One of the corollaries of the general theorems presented in Section 37 for
~m > 1, concerns the DE '

6 7 +a@n=0. (0<z< w®;a>0)

where the mapping x — a(x) is continuous. See Swanson, CThapter 2. The
corresponding Thread Condition has the form

) fim inf | (y%(z) — a(@)y*(x)) dz = — oo.
ztw 1
The corollary takes the form:

COROLLARY. 4 necessary and sufficient condition that the DE (6) be
oscillatory is that the Thread Condition (7) be satisfied by some thread y.
The Leighton-Wintaer Theorem that the DE (6) is oscillatory if

flw a(x) dzr = oo,
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is implied by the corollary, on taking the thread as the mapping x — p(z) = 1.

Note. The major class of admissible curves is that of z-parameterized
curves of class D!, including broken extremals. This class of curves is ade-
quate for a first simple presentation of the new theorems and structure. It is
preferred to a choice of Hilbert Space from the different Banach Spaces
which could be profitably used in variational analysis, because it leaves that
choice fully open, while preserving a close connection with the classical
theory. “Index forms” are definable in terms of broken extremals and permit
an easy transition from the Sturmian properties of a critical extremal to
properties which are purely topological. In our presentation of Variational
Topology which is to follow, admissible curves will range from the merely
continuous to the real analytic and include curves definable in the terminology
of Lebesgue.
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CHAPTER 1

Minimizing Extremals g: Fixed Endpoints

This chapter gives a review of classical results found in varying forms in the
works of Bliss, Carathéodory, Bolza, Hadagissd, Tonelli, and other writers

on variational theory. Present day netation is intreduced and classical proofs
are freely modified.

1. The Euler Equations
‘To properly condition admissible curves sevetal definitions are needed.

Mappings of Class D°. Let [a',a%) be a' closed interval of the axis R of
real numbers. Two intervals of the R-axis are termed nonoverlapping. if their
intersection is empty or a point. A mappitg z — /() : [¢',a*] — R will be
said to be of class D° if [a',a%] is the umoll ,f a finite set of closed, nonover-
lapping subintervals I, on the interior 1 of ekeh of which h is continuous and

at each endpoint z, of which % has 8 finite limit as z, is approached from I

Mappings of Class D'. A mapping = — h(2) : [a'.a’] —> R will be said to
be of class D! if h is continuous and if [a',a?] is the union of a finite set of
nonovcrlappmg closed subintervals I on the ‘interior I of each of which #'
exists and is continuous, and at each endpoint z, of which 4" has a. ﬁmte
limit when z, is approached from I

The Preintegrand f. Let (=, 9, ..., Y.,) be writtén as (z,y) and be the set
of rectangular coordinates of a point (z.y) in a euclidean space E,,, of
dimension m + 1. Let X be an open connected subset of E,.,. Let p =
(p1» - - - » P) be an arbitrary point in the m-fold Cartesian product R™ of R.
For brevity we write i

(1.n @, Y10 s Yo Prs - - -5 Pu) =ZY,P)
9



