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1. Riemann Surfaces and Algebraic Curves 5

Introduction!

The name ‘Riemann surface’ is a rare case of a designation which is fully
justified historically : all fundamental ideas connected with this notion belong
to Riemann. Central among them is the idea that an analytic function of a
complex variable defines some natural set on which it has to be studied. This
need not coincide with the domain of the complex plane where the function
was initially given. Usually, this natural set of definition does not fit into the
complex plane C, but is a more complicated surface, which must be specially
constructed from the function : this is what we call the Riemann surface of the
function. One can get a complete picture of the function only by considering
it on the whole of its Riemann surface. This surface has a nontrivial geometry,
which determines some of the essential characters of the function.

The extended complex plane, obtained by adjoining a point at infinity, can
be perceived as an embryonic form of this approach. Topologically, the ex-
tended plane is a two-dimensional sphere, also known as the Riemann sphere.
This example already displays some features which are characteristic of the
general notion of a Riemann surface:

1) The Riemann sphere CP! can be defined by gluing together two disks
(i.e., circles) of the complex plane; for instance, the disks |2| < 2 and |w| < 2,
in which the annuli 1 < |2| <2 and 1 < |w| < 2 are identified by means of
the correspondence w = z~!. (This yields the shaded area in Fig. 1.)

2) The relation w = 21, which defines the gluing, is a one-to-one and
analytic (conformal) correspondence of the domains it identifies. For that
reason the property of being analytic at some point agrees in both circles,
|z| < 2 and |w| < 2, on the identified regions. This leads to a unified notion

1 The author expresses his profound gratitude to Professor I. R. Shafarevich for numerous
remarks and suggestions, which have contributed to the improvement of the text, and for
writing this introduction, which provides a fascinating bird’s-eye view of the charming
world of algebraic geometry.
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of analytic function on the Riemann sphere glued from them. It is therefore
possible to state and prove such theorems as: ‘a function which is holomorphic
on the whole Riemann sphere is constant’, or: ‘a function on the Riemann
sphere which has only poles for singularities, is a rational function’.

The same principles underlie the general notion of a Riemann surface. We
shall deal only with compact Riemann surfaces. By definition, this is a closed
(compact) surface S glued from a finite number of disks Uy,...,U,, in the
complex plane: for any two disks, U; and Uj, some domains, V;; C U; and
Vji C Uj, are identified by means of a correspondence y;;: Vi; — Vj;, which
is one-to-one and analytic.

In other words, a Riemann surface is a union of sets Uy, ..., Uy, each
of which is endowed with a coordinate function z; (i =1,...,N). This is a
one-to-one mapping of U; onto a disk in the complex plane. Further, in an
intersection V;; = U; NUj, the coordinate z; is expressed in terms of z; as an
analytic function, and similarly z; in terms of z;.

Thus, just as in the case of the Riemann sphere, there is a well-defined
notion of analyticity for a continuous complex-valued function, given in a
neighbourhood of some point p € S. Further, we can carry over to functions
given on the surface S such notions as a pole, the property of being meromor-
phic, and so forth. Hence a Riemann surface is a set on which it makes sense
to say that a function is analytic, and locally (in a sufficiently small domain)
this amounts to the ordinary concept of analyticity in some domain of the
complex plane. This definition is explained in detail in § 1 of Chapter 1.

So, with the notion of a Riemann surface, we run into an entity of a
new mathematical nature. It must be rated on a par with such notions as a
Riemannian manifold in geometry, or a field in algebra. Just as some metric
concepts are defined in a Riemannian manifold, and algebraic operations in a
field, so is the notion of analytic function on a Riemann surface. In particular,
it is now possible to formulate and prove the theorem stating that a function
which is holomorphic on an entire (compact) Riemann surface is constant.

That the concept of Riemann surface is nontrivial, is manifest from its
connection with the theory of multivalued analytic functions. In fact, for ev-
ery such function one can construct a Riemann surface on which it becomes
single-valued. We restrict ourselves to algebraic functions, so the correspond-
ing Riemann surfaces are compact.

The simplest case, represented by the function w = 3/Z, does not yet ne-
cessitate any new type of surface. Indeed we have 2 = w™; so, even though
w is a multivalued function of z, the function z(w) is single-valued. There-
fore we can regard w as an independent variable, running over the Riemann
sphere S, which is just the Riemann surface of the function w. The relation
z = w" defines a mapping of the w-sphere S onto the z-sphere CP!. One can
think of the sphere S as lying ‘above’ CP* (in some larger space), in such a
way that above each point z = zy we find the points which are mapped into
it. Then for zo # 0,00 the inverse image on S of a disk U: |z — 2| < ¢, for
sufficiently small ¢, is made up of n disjoint domains W;, i =1,...,n:
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3 n z

where the w; are the distinct values of 3/zg (Fig. 2a). But, in a neighbourhood
of the point 0 (respectively, of o), the inverse image of a disk |z| < ¢ (respec-
tively, |t| < e, with ¢t = z71) is constituted by a single circle W: |w| < V,
which lies above the disk in the form of a ‘helix’ (see Fig. 2b, where n = 2).

0(

QWn
—

Fig. 2

In the general case, an algebraic function is defined by an equation
f(z,w) = 0, where f(z,w) is a polynomial f(z,w) = ag(2)w™ + ...+ an(2),
and the a;(z) are polynomials in z. As a first, rough approximation to the
Riemann surface of the function w, we shall look at the set S of all solutions
(z,w) of f(2,w) = 0. On this set, w is tautologically the function that takes
on the value wqg at (2q, wg). However, this definition must be made more pre-
cise. We shall assume that S C C2, where C2 is the plane of the two complex
variables z,w, and where the topology of S is inherited from C2. In other
words, S is a complex algebraic curve lying in the plane C2.

To start with, suppose zp is such that f(zp,w) = 0 has n distinct roots
w1, ..., Wn. This means that ag(z0) # 0 and f/,(z0,w;) # 0. Then, by the
implicit function theorem, w is an analytic function g;(z) of z in some neigh-
bourhood |z — zp| < € of zp. More precisely, all solutions of f(z,w) = 0 close
to (zp,w;) can be represented in the form (z,g:(2)), ¢ =1,...,n. That is to
say, the solutions with |z — 2| < ¢ fall into n disks W;, i = 1,...,n:

lz — 20|l <&, w=gi(z),

exactly as in Fig. 2a. We call them disks because the function z maps them
in a one-to-one manner onto the disk U: |z — zo| < €.

It remains to consider the cases we have omitted, in which the number of
solutions of f(zp,w) = 0 is less than n, and also the case where 2y = o0 on



8 V. V. Shokurov

the Riemann sphere CP*. In all these cases there exists a disk U: |z — 20| < €
(respectively, |t| < &, t = 271, if zp = co) with the property that, for all points
2z € U, 2 # zg, we are in the case previously considered. We denote by U the
associated punctured disk: |z — 25| < €, 2 # zp, and by W its inverse image
in S. The set W may turn out to be disconnected.

Trivially, if f(zo, w) = 0 has two distinct solutions, w; and w;, then two
small neighbourhoods in S do not meet and give rise to different connected
components of W, like the sets Wy, ..., Wy, in Fig. 2a. But there are less
trivial cases in which various connected components of W converge to the
same point of S. The idea is that in reality these components must define
distinct points of the Riemann surface S of w: they must be ‘separated’ in S.
If, for instance, w? = 2% + 2° then w = z /1 + z. Now the function 1+ z
has two. branches, g1(2) and g2(2) = —g1(2), in a neighbourhood of 2 = 0.
So W consists of two components: W; = {|z2} <&, 2 # 0, w = zg:(2)} and
Wy = {|z] <&, z #0, w = zg2(2)}, which merge as z — 0 (Fig. 3a).

/ Apleceof W, © Wz
o
<y

a b
Fig. 3
In the general case, we denote by Wl, ceey W’, the connected components

of W. The Riemann surface S is defined in such a way that in it the W;
are, so to speak, ‘isolated’ from each other: their closures do not meet as
z — zp. Set-theoretically, S differs from S in that now there are r distinct
points above 2p, each corresponding to its own component W;. More precisely,
each W; is a connected unramified covering of the punctured disk U : above
every point z € U, we find the same number n; (say) of points in W;, and
Ny + ... +n, = n. It is easy to prove that a function w; can be defined on
each W; in such a way that W; is given as the punctured disk |w;| < gl/ni
w; # 0, and the mapping W; — U is defined as z — zg = wl*. We can then
look at the unpunctured disk W;: |w;| < gl/mi. The various disks W; are
regarded as disjoint sets in the Riemann surface S (cf. Fig. 3b). Each of them
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is mapped by the function w; onto a disk of the complex plane, and they lie
above the Riemann z-sphere as in Fig. 25.

From all the disks W; we have constructed, above the various points
2o € CP! (including zg = 00), we can select a finite number, Wy,..., Wy,
whose union already contains all the others. From the analyticity of all the
mappings we have encountered, it is easy to deduce that the variety obtained
by gluing the disks Wy, ... , Wy verifies the condition occurring in the def-
inition of a Riemann surface. Thus, S is indeed a Riemann surface. For a
detailed justification of this construction, see Chapter 1, § 2.

An arbitrary Riemann surface carries with it a large amount of geometric
information. In particular, the Riemann surface of an algebraic function re-
veals some important characteristics of that function. Since the gluings ¢;; are
conformal, and hence orientation-preserving, transformations, any Riemann
surface is orientable. So, from a topological point of view it has a unique
invariant: the genus. In Fig. 4 are depicted surfaces of genus ¢ =0, 1,2, 3,4.

O cocoesse

Fig. 4

If, for example, a polynomial f(z) (of degree 2n or 2n — 1, say) has no
multiple roots, then the Riemann surface of the function w = /f(z) is of
genus n — 1. But, in addition, one can define on a Riemann surface all the
notions which are invariant under conformal transformations: it has a ‘confor-
mal geometry’. Among such notions are the Laplace operator and harmonic
functions. In particular, the real and imaginary parts of a function which is
analytic in some domain of a Riemann surface, are harmonic. This enables us
to study functions on a Riemann surface by applying the apparatus of elliptic
differential operators and even some physical intuition. A harmonic function
on a Riemann surface can be conceived as a description of a stationary state
of some physical system: a distribution of temperatures, for instance, in case
the Riemann surface is a homogeneous heat conductor. Klein (following Rie-
mann) had a very concrete picture in his mind:

“This is easily done by covering the Riemann surface with tin foil ... Sup-
pose the poles of a galvanic battery of a given voltage are placed at the points
Ay and Ay. A current arises, whose potential u is single-valued, continuous,
and satisfies the equation Au = 0 across the entire surface, except for the
points Ay and A3, which are discontinuity points of the function.”

[Vorlesungen iiber die Entwicklung der Mathematik im 19. Jahrhundert, p. 260

The existence of functions, which is suggested by such physical consider-
ations, is established on the basis of the theory of elliptic partial differential
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equations. This provides an absolutely new method of constructing analytic
functions on a Riemann surface: once a harmonic function u has been con-
structed, we select its conjugate function v, so that u + iv is analytic.

In particular, this enables one to describe the stock of all meromorphic
functions on any Riemann surface S. If S is the Riemann surface of an alge-
braic function w given by f(z,w) = 0, then both w and z are meromorphic
functions on S. Therefore any rational function of w and z is meromorphic.
It can easily be proved that this is the way all meromorphic functions on
S are obtained. This is a generalization of the theorem saying that a mero-
morphic function on the Riemann sphere is a rational function of 2. For an
arbitrary Riemann surface, however, it is by no means obvious that there is
even one nonconstant meromorphic function. Such a function is constructed,
as we have just said, by using methods from the theory of elliptic partial
differential equations. Furthermore, one can construct along the same lines
two meromorphic functions w and z on S, connected by a relation of the
form f(z,w) =0, where f is a polynomial, and with the property that S is
just the Riemann surface of the algebraic function w defined by the equation
f = 0. This result is known as ‘Riemann’s existence theorem’.

Hence the abstract notion of a (compact) Riemann surface reduces to that
of Riemann surface for an algebraic function. This is a highly nontrivial re-
sult, with powerful applications. Indeed, in a number of particular situations,
what arises is an ‘abstract’ Riemann surface. Then the preceding theorem
provides a very explicit realization of such a surface. The simplest example
of such a situation is when S is the quotient group C/A of the complex plane
C modulo a lattice A = {wyn1 + weny | n1,n2 € Z}, spanned by two complex
numbers wj and ws. Let U be any sufficiently small disk, so that no two of its
points differ by a vector from A. Then the coordinate z on C is a one-to-one
mapping of U onto a domain in S = C/A (Fig. 5). Further, these disks form
a covering of S. Topologically S is a torus: it is of genus 1. In this situation,
Riemann’s existence theorem shows that S is the Riemann surface of an alge-
braic function w = /2% + az + b, where @ and b are some complex numbers
and the polynomial 2% + az + b has no multiple roots. It can be shown that
every Riemann surface of genus 1 can be obtained in this way. The mero-
morphic functions on S are interpreted as being all meromorphic functions of
z which are invariant under translations by vectors of the lattice A, that is,
elliptic functions. In this case, Riemann’s existence theorem furnishes a very
explicit description of an elliptic function field.

Such a description is possible for Riemann surfaces of genus g > 1 as well.
One has to consider discrete groups of linear fractional transformations acting
in the disk |2| < 1. Two points are identified if they are sent to each other
by an element of such a group I'. Thus the Riemann surface is represented
as a quotient I'\D, where D is the unit disk. Just like the plane C (for
surfaces of genus 1), the unit disk, for genus g > 1, is the universal covering
of the Riemann surface S. For g =0, S is nothing else than the Riemann
sphere and is its own universal covering. In the plane C the Euclidean metric
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ds? = ldzl2 is invariant under transformations of the group A and specifies
a metric of zero-curvature on the surface S. Likewise, in the unit circle the
metric ds? = |dz|*/(1 — lzl2) defines a Lobachevskian geometry of constant
negative curvature, and hence a similar metric on the surface S = I'\D as
well. Finally, there is a metric of constant positive curvature on the sphere
CP!. In all three cases, these metrics provide the Riemann surface S with a
‘conformal geometry’. Hence the properties of Riemann surfaces depending
on their topology can be summarized in the following Table:

Genus | Type of universal covering | Metric of constant curvature K

0 Riemann sphere CP! K>0
1 C K=0
>1 D= {z, |2 <1} K<0

One sees from this table that on any Riemann surface S one can de-
fine a metric ds? of constant curvature K which provides the surface with
a conformal geometry. The converse is also true: any metric ds? = Edx? +
2Fdxdy + Gdy? on a compact orientable surface S defines on it a Riemann
surface structure. Namely, it can be proved that, in a neighbourhood U of
any point on the surface, any such metric can be written in some coordinate
system as ds? = \(dz? 4+ dy?) (z and y are called isothermal coordinates).
Setting z = z + 4y we may write the metric as ds? = Adzdz. If, similarly,
ds? = pdwdiw in another domain V, one checks easily (in view of the ori-
entability of the surface) that dw = @dz. It follows that w is an analytic
function of z. Thus the domains U, together with their coordinates z, define
a Riemann surface structure on S. Two metrics define the same Riemann
surface if they differ by a factor 3, where 9 is an everywhere positive, real
function on S. Multiplication by such a function is called a gauge transfor-
mation. Thus a Riemann surface is the same as a surface with a metric of
differential geometry, which is considered up to gauge transformations. This
is how Riemann surfaces arise in quantized field theory, in the so-called boson
string theory.



