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PREFACE

This book aims to present to first and second year graduate students a
beautiful and relatively accessible field of mathematics—the theory of singu-
larities of stable differentiable mappings.

The study of stable singularities is based on the now classical theories of
Hassler Whitney, who determined the generic singularities (or lack of them)
for mappings of R* - R™ (m > 2n — 1) and R? — R?, and Marston Morse,
who studied these singularities for R* — R. It was René Thom who noticed
(in the late ’50°s) that all of these results could be incorporated into one
theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in [42])
gave the first general exposition of this theory. However, these notes preceded
the work of Bernard Malgrange [23] on what is now known as the Malgrange
Preparation Theorem—which allows the relatively easy computation of
normal forms of stable singularities as well as the proof of the main theorem
in the subject—and the definitive work of John Mather. More recently, two
survey articles have appeared, by Arnold [4] and Wall (53], which have done
much to codify the new material; still there is no totally accessible description
of this subject for the beginning student. We hope that these notes will
partially fill this gap. In writing this manuscript, we have repeatedly cribbed
from the sources mentioned above—in particular, the Thom-Levine notes
and the six basic papers by Mather. This is one of those cases where the
hackneyed phrase if it were not for the efforts of . . ., this work would not
have been possible” applies without qualification.

A few words about our approach to this material: We have avoided
(although our students may not always have believed us) doing proofs in the
greatest generality possible. For example, we assume in many places that
certain manifolds are compact and that, in general, manifolds have no
boundaries, in order to reduce the technical details. Also, we have tried to
give an abundance of low-dimensional examples, particularly in the later
chapters, For those topics that we do cover, we have attempted to “fill in
all the details,” realizing, as our personal experiences have shown, that this
phrase has a different interpretation from author to author, from chapter to
chapter, and—as we strongly suspect—from authors to readers. Finally, we
are aware that there are blocks of material which have been included for
completeness’ sake and which only a diehard perfectionist would slog through
—especially on the first reading although probably on the last as well. Con-
versely, there are sections which we consider to be right at the “heart of the
matter.” These considerations have led us to include a Reader’s Guide to
the various sections. '

Chapter I: This is elementary manifold theory. The more sophisticated reader
will have seen most of this material already but is advised to glance through
it in order to become familiar with the notational conventions used elsewhere
in the book. For the reader who has had some manifold theory before,
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Chapter I can be used as a source of standard facts which he may have
forgotten.

Chapter II: The main results on stability proved in the later chapters depend
on two deep theorems from analysis: Sard’s theorem and the Malgrange
preparation theorem. This chapter deals with Sard’s theorem in its various
thrms. In §1 is proved the classical Sard’s theorem. Sections 2-4 give a
formulation of it which is particularly convenient for applications to
cifferentiable maps: the Thom transversality theorem. These sections are
. sential for what follows, but there are technical details that the reader is
well-advised to skip on the first reading. We suggest that the reader absorb
the notion of k-jets in §2, look over the first part of §3 (through Proposition
3.5) but assume, without going through the proofs, the material in the last
half of this section. (The results in the second half of §3 would be easier to
prove if the domain X were a compact manifold. Unfortunately, even if we
were only to work with compact domains, the stability problem leads us to
consider certain noncompact domains like X x X — AX.) In §4, the reader
should probably skip the details of the proof of the multijet transversality
theorem (Theorem 4.13). It is here that the difficulties with X x X — AX
make their first appearance.
Seciions S and 6 include typical applications of the transversality theorem.
The tubular neighborhood theorem, §7, is a technical result inserted here
because it is easy to deduce from the Whitney embedding theorem in §5.

Chapter III: We recommend this chapter be read carefully, as it contains
in embryo the main ideas of the stability theory. The first section gives an
incorrect but heuristically useful ““proof” of the Mather stability theorem:
the equivalence of stability and infinitesimal stability. (The theorem is
actually proved in Chapter V.) For motivational reasons we discuss some
facts about infinite dimensional manifolds. These facts are used nowhere in
the subsequent chapters, so the reader should not be disturbed that they are
only sketchily developed. In the remaining three sections, we give all the
elementary examples of stable mappings. The proofs depend on the material
in Chapter II and the yet to be proved Mather criterion for stability.

Chapter IV gives the second main result from analysis needed for the stability
theory: the Malgrange preparation theorem. Like Chapter II, this chapter is
a little technical. We have provided a way for the reader to get through it
without getting bogged down in details: in the first section, we discuss the
classical Weierstrass preparation theorem—the holomorphic version of the
Malgrange theorem. The proof given is fairly easy to understand, and has
the virtue that the adaptation of it to a proof of the Malgrange preparation
theorem requires only one additional fact, namely, the Nirenberg extension
lemma (Proposition 2.4). The proof of this lemma can probably be skipped
by the reader on a first reading as it is hard and technical.

In the third section, the form of the preparation theorem we will be using
in subsequent chapters is given. The reader should take some pains to under-
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stand it (particularly if his background in algebra is a little shaky, as it is
couched in the language of rings and modules).

Chapter V contains the proof of Mather’s fundamental theorem on stability.
The chapter is divided into two halves; §§1-4 contain the proof that infinitesi-
mal stability implies stability and §§5 and 6 give the converse. In the process
of proving the equivalence between these two forms of stability we prove
their equivalence with other types of stability as well. For the reader who is
confused by the maze of implications we provide in §7 a short summary of
our iine of argument.

It should be noted that in these arguments we assume the domain X is
compact and without boundary. These assumptions could be weakened but
at the expense of making the proof more complicated. One pleasant feature
of the proof given here is that it avoids Banach manifolds and the global
Mather division theorem.

Chapters VI and VII provide two classification schemes for stable singularities.
The one discussed in Chapter VI is due to Thom [46] and Boardman [6]. The
second scheme, due to Mather and presented in the last chapter, is based on
the “local ring” of a map. One of the main results of these two chapters is a
complete classification of all equidimensional stable maps and their singu-
larities in dimensions < 4. (See VII, §6.) The reader should be warned that the
derivation of the “ normal forms”’ for some stable singularities (V11, §§4 and 5)
tend to be tedious and repetitive.

Finally, the Appendix contains, for completeness, a proof of all the facts
about Lie groups needed for the proofs of Theorems in Chapters V and VI.

This book is intended for first and second year graduate students who
have limited—or no—experience dealing with manifolds. We have assumed
throughout that the reader has a reasonable background in undergraduate
linear algebra, advanced calculus, point set topology, and algebra, and some
knowledge of the theory of functions of one complex variable and ordinary
differential equations. Our implementation of this assumption—i.e., the
decisions on which details to include in the text and which to omit—varied
according to which undergraduate courses we happened to be teaching, the
time of day, the tides, and possibly the economy. On the other hand, we are
reasonably confident that this type of background will be sufficient for
someone to read through the volume. Of course, we realize that a healthy
dose of that cure-all called ““mathematical sophistication” and a previous
exposure to the general theory of manifolds would do wonders in helping the
reader through the preliminaries and into the more interesting material of the
later chapters.

Finally, we note that we have made no attempt to create an encyclopedia
of known facts about stable mappings and their singularities, but rather to
present what we consider to be basic to understanding the volumes of
material that have been produced on the subject by many authors in the past
few years. For the reader who is interested in mcre advanced material, we
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recommend perusing the volumes of the *“Proceedings of Liverpocl Singu-
larities” [42, 43), Thom’s basic philosophical work, ““Stabilité Structurelle
et Morphogenése”* [47], Tougeron’s work, ‘* Ideaux de Fonctions Differenti-
ables” [50], Mather’s forthcoming book, and the articles referred to above.

There were many people who were involved in one way or another with
the writing of this book. The person to whom we are most indebted is John
Mather, whose papers [26-31] contain almost all the fundamental results of
stability theory, and with whom we were fortunately able to consult fre-
quently. We are also indebted to Harold Levine for having introduced us to
Mather’s work, and, for support and inspiration, to Shlomo Sternberg, Dave
Schaeffer, Rob Kirby, and John Guckenheimer. For help with the editing of
the manuscript we are grateful to Fred Kochman and Jim Damon. For
help with some of the figures we thank Molly Scheffe. Finally, our thanks
to Marni Elci, Phyllis Ruby, and Kathy Ramos for typing the manuscript
and, in particular, to Marni for helping to correct our execrable prose.

Cambridge, Mass. Martin Golubitsky
August, 1973 Victor W. Guillemin
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Chapter 1

Preliminaries on Manifolds

§1. Manifolds

Let R denote the real numbers and R" denote n-dimensional Euclidean
space. Points of R™ will be denoted by n-tuples of real numbers (x,, .. ., x,)
and R" will always be topologized in the standard way.

Let U be subset of R*. Then denote by U the closure of U, and by Int (U)
the interior of U.

Let U be an open set, /: U— R, and x € U. Denote by (6f/éx,)(x) the
partial derivative of f with respect to the ith variable x; at x. To denote a
higher order mixed partial derivative, we will use multi-indices, i.e., let
a = (ay, ..., a,) be an n-tuple of non-negative integers. Then

olal oletl
axe) = 0x,%1 Oxy%+ » - OXp%n

and f:U —r is k-times differentiable (or of class C* or C*) if
(8"f/3x*) x) exists and is continuous for every n-tuple of non-negative
integers a with |af < k. (Note that when a = (0,...,0), 3"°f/dx* is
defined to be f.) f is real analytic on U if the Taylor series of f about each
point in U converges to f in a neighbourhood (nbhd) of that point.
Suppose ¢: U — R™ where U is an open subset of R* and f is some real-
valued function defined in the range of ¢; then ¢ * f = f - ¢ (where - denotes
composition of mappings) is called the pull-back function of f by ¢.

Definition 1.1. Let ¢: U — R™ U an open subset of R".

f where |of = o+ +a,

(a) ¢ is differentiable of class C* if the pull-back by ¢ of any k-times
differentiable real-valued function defined on the range of ¢ is k-times differ-
entiable.

(b) ¢ is smooth (or differentiable of class C®) if for every non-negative
integer k, ¢ is differentiable of class C*.

(c) ¢ is real analytic if the pull-back by ¢ of any real analytic real-valued
Sfunction defined on the range of ¢ is real analytic.

Let¢: U—-R™ be C!? differentiable in U and Xo a point in U. Then by
Taylor’s theorem there exists a unique linear map (d¢),,: R* — R” and a
function p: U — R™ such that

o(x) = ‘P(xo)'*' (de) <, (x ~ xp) + p(x)
for every x in a nbhd V of x,, where
Lim le(x)] =
xwxo lx - XO!

1



2 Preliminaries on Manifolds

Note that we will use |x| to denote the Euclidean norm (3 x;*)*/2. Let
(d$),: R* > R™ be the Jacobian of ¢ at x,; it is given with respect to the
coordinates x;,..., x, on R* and y,,...,», on R™ by the m x n matrix

(2 0

1</<n

where ¢': R" = R(1 < i < m) are the m coordinate functions defining ¢.

The chain rule holds, of course. That is, if ¢: U — R™ and ¢ : ¥V — R”
are both C! differentiable where I/ € R" and ¥ C R™ are open and V' >
o(U), then d({ - o), = (d{), ., (de), forevery x,inU.

Theorem 1.2, (Inverse Function Theorem). Let U < R™ be openandp be a
point in U. Let ¢:U—R* be a C* differentiable mapping. Assume that
(d#), : R* — R* is invertible. Then there exists an open set V in R* contained in
the range of ¢ and a mapping i : V — U, differentiable of class C*, such that
é-¥(x) = x for every x in'V, and - d(x) = x for every x in y(V).

Proof. See appendix of Sternberg; or Lang. [

Definition 1.3. A local homeomorphism of R" is a homeomorphism of
some open subset of R" onto another. (So the domain of a local homeomorphism
need not be all of R".)

Let ¢ be a mapping. Denote by dom ¢ the domain of ¢. Also, if U < dom ¢
denote by ¢| U the restriction of ¢ to U. If X'is a set, then idy : X — X denotes
the identity mapping on X.

Definition 1.4. A pseudogroup on R" is a collection T of local homeo-
morphisms on R* with the following properties:

(@) idgrisin T,

(b) if ¢ and Y are in T with dom ¢ = range of ¢ then y-dpisin T, ie., T is
closed under composition for all pairs of elements for which this operation makes
sense.

(c) ifdisinT, then ¢~ isin " (where ¢~ denotes the inverse function of $)

(d) if ¢ is in T and U is an open subset of dom ¢, then |U is in T, and

(&) if {Uyleet (I some index set) is a collection of open subsets of R, ¢ is a
local homeomorphism of R* definedon U = Uyer Uy, and ¢|U, is in T for every
ainl then isinT.

Some examples of pseudogroups are:

(a) (diff)* = the set of all local diffecomorphisms on R*" (n fixed) which are
differentiable of class C*. :

(b) (diff)® = the set of local diffeomorphisms of R (n fixed) which are
smooth.

(c) (diff)® = the set of all local diffeomorphisms of R (n fixed) which
are real analytic.



§1. Manifolds 3

To show that (a) and (b) satisfy the conditions of the definition you need
to use only the chain rule, the inverse function theorem, and the local charac-
ter of differentiability. For (c) you need the strengthened versions of the
above theorems for analytic functions.

A more general class of pseudogroups can ‘be given as follows:

(d) Let G be a group of linear mappings of R" -> R*. Then the pseudo-

group I';¥ is the set
{¢ e (diff)* | ¥x € dom ¢, (d$). € G}
(i) G = all linear maps on R" with positive determinant. Then I';* =

(diff)§ consists of orientation preserving C*¥ mappings.

(ii) G = all linear maps on R" with determinant equal to 1. Then I'g*
consists of all volume preserving C* mappings.

(iii) Let (, ) be an inner product on R*. Let G be the group of orthogonal
matrices relative to (, ); namely, 4 € G iff (x, y) = (Ax, 4y) for every x, y
in R™. Then I';* consists of all C* isometries in R".

Definition 1.5. Let T be a pseudogroup on R* and X a Hausdorff topo-
logical space which satisfies the second axiom of countability. Let A be a subset
of all local homeomorphisms of X into R", i.e., homeomorphisms which are
defined on an open subset of X and whose range is an open subset of R". Then

(i) A is a I'-atlas on X if

(@) X = Upes dom ¢

(b) if ¢, are in A, then y-¢~*|¢(dom ¢ N dom ¢) is in I
(ii) The elements of A are called charts on X.

(iiiy Two T-atlases A, and A, on X are compatible if ¢ - ¢~ !|¢(dom ¢ N
dom ¢) is in T’ whenever ¢ is in A, and  is in A,, and vice-versa.

(iv) A Hausdorff space X together with an equivalence class of compatible
T-atlases is called a T-structure on X.

Notes. (1) Recall that X satisfies the second axiom of countability if the
topology on X has a countable base.

(2) If X has a I-structure, then X is locally compact, since it is locally
Euclidean.

Definition 1.6. Let X have a I'-structure.

(a) If T = (diff)*and k > 0, then X is a differentiable manifold of class C*.

(b) If T = (diff)°, then X is a topological manifold.

(c) If T = (diff)*, then X is a smooth manifold or a manifold of class C=.

(d) If T = (diff)®, then X is a real analytic manifold.

(e) If T = (diff)§ and k > O then X is an oriented C* differentiable mani-
fold. Any differentiable manifold which has a (diff)} structure in which the
charts are elements of the original (3iff)* structure is orientable.

Examples

(1) st = {x = (X1,..., ) ER® Z x3 = 1}.
=1

Let N=(1,0,...,0)and S = (-1,0,...,0).
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Let ¢y:{S""! — {N}} > R""! be stereographic projection via N, i.e.,
¢N(x1v rry xn) = (l/(l - xl))(xm ey xn) and ¢S: {sn—l - {S}} —R""! be
stereographic projection via S, i.e., dg(xy, . .., x,) = (1/(1 + x)) (xa, . .., x,).
Then ¢s-¢y ' : R*"! — {0} > R*~! — {0} is given by y — y/|y|? for all y in
R*=1 — {0}. Since (s-¢y~1)-(ds-Py~") = id we see that det (dds-¢py 1), =
+ 1. Evaluate at y = (1,0, ..., 0) to see that, in fact, det (dps-dy~?) = —1.
To show that S*~! is an oriented analytic manifold we can change the last
coordinate of ¢, to —x,/(1 — x;) thus changing the determinant to +1.

(2) P* = real projective n-space.

To define P* we introduce the equivalence relation ~ on R**! — {0}:

(xgy . - +» Xa) ~ (X0, ..., x,) iff there is a real constant ¢ such that x, = cx,
for all i.

P = R**! — {0}/~ is the set of these equivalence classes.

Let #:R"*! — {0} — P" be the canonical projection. P” is given the
standard quotient space topology and note that with this topology = is an
open mapping. To show that P” has a manifold structure it is necessary to
produce local homeomorphisms of P" into R” which overlap properly.

Let ¥, = R"*! — {hyperplane x, =0} for 0 <i<n. V, is open in
R**' —"{0}, hence #(V;) = U, is open in P". Clearly P" = U, U --- UU,.
Define ¢,: U, — R” by

(=1
dp) = X,
and " indicates that coordinate is to be omitted. Using the equivalence rela-

tion defining P" and the fact that p is in U, one sees that ¢, is a well-defined
homeomorphism onto R".

A

(xoy - s Biy ..., X,) where p = m(x,,..., x,)

#(U,n U} = R — {hyperplane y, = 0} (i>)
#(U, N Uj) = R* — {hyperplane y;-, =0} (i <))
where we assume y,,..., y, are the coordinates on R". So for i <

¢, - ¢, ' :R" — (hyperplane y, = 0} —» R" — {hyperplane Y1 =0} A
computation yields for i < j
. (-n™
&9 (i) = _y__(yl""ﬂ.yi’.Vi+2""’ijlv Vistoeos Iu)
i+1
which is a real analytic mapping so P” becomes a real analytic manifold.
When i/ < j another computation yields

n+1
det (d¢; . (P_[—l)(_yl,,“‘»y") - ( ) (_l)(n+1)(i+/)
i+l

from which we see that real projective space in any odd dimension
(P3"+1 n > 0) is orientable. I can be proved that P?" is not orientable.

(3) G.., = Grassmannian space of k-planes through the origin in
R™.
= set of all k-dimensionai subspaces of Euclidean n-space.
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NOte that Gl.n+l = P'.
We will give Gy, a decomposition space topology. Let W = all ordered
k-tuples P = (P, ..., P,) of k linearly independent vectors in R*. W is an

open subset of
R"D - DR~
\———Y—-_J
k —times

Define an equivalence relation ~ on W as follows:

P~Q if {(P,....,P} and {Q,,..., O

span the same k-dimensional subspace of R",

Clearly G\, can be identified with W/~ as sets so we may give G, the
topology induced by this identification. We now give G, , an analytic struc-
ture. Equip R" with an inner product (, ). Then given a subspace V of R",
there is an orthogonal projection =, of R* onto V. Suppose V is a k-dimen-
sional subspace of R Let my, = restriction of wy, to U. Let W, =
{Ue€ Gy,» | myv is a bijection onto V}. .

Let ¥+ = the orthogonal complement of ¥ in R™ Define

pv: Wy — Hom (V, V%)

as follows: Let U € W,. Then p,(U) = m;, ,. -7}, € Hom(V, V). We
leave it to the reader to check that p, is a homeomorphism. Now make the
identification Hom (¥, ¥V *) = R*"""%)_ 1o get a chart ¢, : W, — R~ %),
Again it is left to the reader to check that p, - pj! : RK(" %) _, Rk(n=k) jg
real analytic. Hence G, , is a real analytic manifold of dimension k(n — k).
Note that for k = 1 this is the same atlas that we constructed for P"~1,
Thus G, , = P~

Definition 1.7. Let X and Y be C* differentiable manifolds of dimension
n and m, respectively. Then X x Y can be made into a C* differentiable mani-
Jold of dimension n + m in the following natural way. Let Ax and Ay be atlases
onXand Y. Let¢€ Ay, pc Ay. Then¢ x ¢:dom ¢ x domy — R* x R™ =
R"*" is given by ¢ x f(x,y) = ($(x), ¥{)) xe X,y Y. ¢ x ¢ is clearly
a local homeomorphism of X x Y —>R"*™ Then Ag.y = {¢p X ¢ | $ € Ay,
e Ay} is an atlas for X x Y.

Applications
(1) The r-Torus,
St x-...x S
r—tlmes
is a smooth manifold of dimension r.
(2) if X and Y are oriented manifolds, then so is X x Y.

Definition 1.8. Let X be a topelogical n-manifold, and p a point in X. A
set of local coordinates on X based at p is a collection of n real-valued func-
tions {¢y, ..., ¢,} defined on an open nbhd U of p, (i.e., ¢,: U—R) so that
$(p) =0(1 <i<nyand¢:U— R"defined by $(q) = ($,(g), ..., du(q)) isa
chart in the manifold structure on X.
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Clearly if 4 is a chart of X based at p (i.e., 4 is defined on a nbhd of p and
#(p) = 0) then the coordinate functions of ¢ define a system of local co-
ordinates on X based at p.

The common domain of a set of local coordinates based at pis a coordinate
nbhd of p.

§2. Differentiable Mappings and Submanifolds

Definition 2.1. Let Y be a C*-differentiable manifold of dimension m.

(@) Let f: Y—R be a function. f is C*-differentiable if for every chart
¢:domé —R™, f.¢-':ranged — R is a Ck-differentiable mapping. f is
smooth if fis C*-differentiable for every k.

(b) Let X be a C*-differentiable manifold. Then $: X — Y is C*-differ-
entiable if for every C*-differentiable function f: Y — R, the pullback Sdis
C*-differentiable. ¢ is smooth if ¢ is C*-differentiable for every k.

(c) We will use differentiable ro0 mean C*-differentiable for k at least 1.

Remark. Suppose that ¢ : X — Y is a mapping with p in X and q = ¢(p)
in Y. Let U and ¥ be coordinate nbhds of X and Y based at p and q respec-
tively, and assume that $(U) < V. Suppose p: ¥ —>R™ and 7: U —> R" are
charts. Then ¢ is C*-differentiable iff p-$-7~1: range r = R* — R™ is C*-
differentiabte. This shows that differentiability of a function between mani-
folds is a local question and is independent of the particular local representa-
tion used.

Definition %2 Let X and Y be differentiable manifolds of dimension n
and m, respectively. Let ¢ : X — Y be differentiable. Let p be in X, p a chart
on X with p in dom p, and r a chart on Y with $(dom p) < dom r.

Then (dr+¢+p~1) s : R* — R™ is a linear mapping. Define rank of $atp
to be rank (dr+¢+p™ V),

Note. The definition of rank does not depend on which charts are se-
lected. Let p’, v’ be charts with the above properties. Then on a nbhd of r
and f(p),

rank (dr’+¢+(p)"")pmy = rank (dr'ev 2o rebep=te 0o (p") "V g,y
= rank (dred+p~1),
by the chain rule and the fact that 7'-+~* and p-(p’)~? are in (diff)!.
Definition 2.3. Let X and Y be differentiable manifolds. Let ¢: X — Y

be a differentiable mapping. Suppose that at the point p in X, ¢ has the maximum
possible rank. Then

(a) ifdim X < dim ¥, ¢ is an immersion at p,

(b) if dim X = dim Y, ¢ is a submersion at p,

(c) if for every p in X, ¢ is an immersion (submersion) at p, then ¢ is an
immersion (submersion),



