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PREFACE

This book is based on courses in advanced statistical mechanics given in
Chicago in 1969 and 1982. A draft of the first nine chapters was used for a
series of lectures at the University of Minnesota at Minneapolis in 1984. 1 am
grateful to the participants of these courses for their comments, verbal and
otherwise, which have helped in the writing of the book.

A special note of gratitude goes to Sam Edwards, who introduced me to
the subject of the statistical mechanics of polymers while I was a postdoc at
Manchester. The work upon which the book is based arises from the research
done with my students, postdocs, and visiting scholars, R. S. Adler, M. G.
Bawendi, B. J. Cherayil, J. F. Douglas, H. P. Gillis, A. L. Kholodenko, M. K.
Kosmos, A. Miyake, M. Muthukumar, A. M. Nemirovsky, Y. Oono (and his
collaborator T. Ohta), and S. Q. Wang, who have worked on various aspects
of polymer excluded volume and without whom this book would not have
been possible. A special note of thanks goes to Y. Oono for introducing me to
the direct renormalization group methods. Some of the research was done
concurrent with the writing of the book. Several subjects are not discussed
because of my interest in providing only an introduction to both
renormalization group methods and their application to polymers. Some of
these further subjects are briefly described in Chapter 14 to direct the
interested reader to the original references which should be accessible after
reading this book.

A number of people have made detailed comments on portions of the
manuscript and these include Sam Edwards, Peter Harrowell, and Arkady
Kholodenko. In addition, Moungi Bawendi, Binny Cherayil, Jack Douglas,
and Adolfo Nemirovsky have gone through several versions of the manu-
script and have provided critical comments and suggestions for improve-
ment. They have all eased a difficult task.
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Finally, I thank Virginia Addleman for typing the evolving manuscript
and the polymers program of the National Science Foundation for the
continued support of my polymer research.

KARL F. FREED

Chicago, lllinois
October 1986
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1

INTRODUCTION

The theoretical description of the static and dynamic properties of polymers
in solution, the melt, or the solid state is both fundamentally important and
enormously complicated. Attempts to formulate a general theory of the
physics of polymers have until recently been beset by severe mathematical
difficulties, in part because the intramolecular and intermolecular polymer—
polymer interactions lead to the presence of long-range correlations in
polymer systems. These complexities have stimulated the use of Monte Carlo
simulations of polymers which have furthered our understanding of these
interesting systems. Recently, however, new theoretical methods have been
developed for describing the properties of systems with long-range correla-
tions; these approaches now enable a wide variety of polymer properties to
be calculated in an approximate analytical form. In many instances this
theory is in good agreement with experiment, and there is a growing
indication that these methods will provide the desired comprehensive theory
of a number of interesting polymer systems.

This book describes one of the most successful and far-reaching of these
new theoretical methods, the renormalization group, and shows how it
applies to the study of polymers. Emphasis is placed both on the theoretical
development and on comparisons with experiment. To present the subject to
an audience having possibly little or no prior exposure to the field of
polymers or to renormalization group concepts, we begin this chapter with a
brief description of what a polymer is, what microscopic structural aspects of
polymers lead to their apparent compiexity, what universal features of large
length scale polymer properties provide essential simplifications in their
theoretical description, and what connections exist between theories of
polymers, theories of critical phenomena, and other areas of physics.
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A. THE PRIMARY STRUCTURE OF POLYMERS

A polymer consists of a set of sequentially bonded monomer units. When the
number of bonds becomes large, the overall polymer dimensions greatly
exceed those of the constituent monomers. Because of its large dimension, the
polymer is also called a macromolecule. The simplest type of polymer is a
sequential linear chain of monomers. For example, consider a polymer with
the full carbon atom backbone of monomer units -CR,R,—CR3R,—, where
the R; are small pendent side groups, such as H, CH;, C¢Hs, etc. This linear
polymer may be schematically represented in terms of its chemical formula as

Rl R3
L
(—C—C—), (L.1)

I
R; R4

where n is the polymerization index. The simplest example of (1.1) is
polyethylene, where all the R, are hydrogen atoms. A wide variety of different
polymers, each with its own unique properties, is obtained by varying the R;
and possibly the backbone chain atoms. More complicated branched
structures are possible when some monomers are bonded to more than two
other monomers. [The simple representation in (1.1) no longer applies in that
case.] Polymers having identical repeating monomer units are called
homopolymers, whereas those formed from more than one monomer type are
copolymers. Monomers in copolymers may be arranged in a random
sequence, in an alternating sequence, or they may be grouped in blocks. Small
changes in the monomers, their arrangement along the chain, or in the
branching structure can lead to profound changes in the spatial shape and
distribution of the polymer and thereby greatly affect its macroscopic
properties. This enormous diversity of polymer properties is reflected in their
central importance technologically and in all biological systems.

Experiments on real polymer systems cannot, in general, be performed
upon a single isolated chain. Thus, even if the polymer concentration is
sufficiently low that chains are isolated from one another, all measurements
involve contributions from a large number of different polymers in a wide
variety of conformations. The measurement process, therefore, involves an
average over a large ensemble of polymer molecules in identical environ-
ments, a situation making the description of polymer systems amenable to
the methods of statistical mechanics.
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B. LARGE-SCALE CHARACTERISTICS AND UNIVERSALITY

Another major feature of the primary structure of polymers involves the fact
that the bond lengths, for example, the equilibrium lengths of the C—C bonds
in (1.1), and the angles between successive C-C bonds are fixed. While such
short-scale geometric characteristics might be thought to complicate the
description of the polymer, they are actually rather unimportant when
considering the properties of polymers on length scales much large than the
size of a single monomer. Just as the naked eye cannot resolve individual
atoms, so also an instrument measuring on length scales on the order of entire
polymer dimensions cannot resolve the intricate structure of the individual
monomers, and only the universal chainlike nature of the polymer is
perceptible.

We cite the following as examples of the insensitivity of long wavelength
polymer properties to the intricate details of monomer structure: At the most
basic level, if M, is the monomer molecular weight in a homopolymer with
polymerization index n, then the total molecular weight M of the polymer is
nM, and is clearly independent of both monomer geometry and branching
structure. Likewise, the radius of gyration Rg of a polymer, an experiment-
ally measurable quantity related to the distribution of monomers about the
center of mass, provides an average measure of the size of the macromolecule
without detailed reference to the underlying fine structure. A commonly
studied polymer-solvent system is polystyrene in cyclohexane, where polysty-
rene of molecular weights up to 4 x 107 is available. The individual styrene
monomer molecular weight is 104, providing an idea of the number of
monomers in the molecule. The radius of gyration in Angstrom units is found
to be given by

Rg = 0.3(M)'/?

so readily accessible chains with M = 10° have Rg ~ 300 A.

Other commonly measured polymer properties also reflect the polymer
size and not the detailed organization of individual monomers. The
hydrodynamic radius Ry describes the apparent “hydrodynamic” size of a
polymer as it drifts through a fluid; the second osmotic virial coefficient A, is
proportional to an effective volume excluded to a polymer by another
polymer in solution; and the intrinsic viscosity [5] is another measure of the
polymer’s hydrodynamic volume influencing the rate of energy dissipation in
shear flow of the polymer solution. All of these gross measures of polymer
dimensions are found [1-3] under many conditions to vary as a power law of
M )

P =KM° (P = Rg, Ry, A, or [n]) (12)
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where the prefactor K and exponent a generally depend on the property,
polymer, solvent, and temperature, as well as being slowly varying functions
of molecular weight M itself [1-8].

A combination of experimental data, the results of various theories
discussed in Chapter 4 [1, 2] and computer simulation data [9-15] suggest
that equilibrium polymer properties such as R; and A, can be described by
universal functions of a single phenomenological parameter [1, 16] z that is
proportional to M'/2 and to 1 — (6/T), where T is the absolute temperature
and 6 is called the theta temperature [1] at which A, = 0 for a particular
polymer—solvent system. Hence, we anticipate universality for long wave-
length equilibrium polymer properties to be expressed in the form of uni-
versal functions of z. Furthermore, the only system dependence is expected to
occur in the parameter 6 and in the proportionality factor between z and
M12[1 — (6/T)], parameters that are complicated many-body functions of the
microscopic details of the polymer structure and the polymer—polymer and
polymer-solvent interactions and that we make no attempt here to evaluate
from theory [16]. Instead, these few system-dependent parameters are
determined by comparison with experimental data [17].

The simplifications introduced by considering long wavelength polymer
properties have their counterparts in many other areas of physics where very
different systems may be characterized by universal long wavelength
descriptions in which the only reference to the particular material enters
through a few system-dependent phenomenological parameters. Examples
include sound propagation through solids and the hydrodynamics of fluids.
Analogies with the latter can be used to understand the universal laws
governing large-scale polymer properties. Molecular fluids have rather
complicated dynamics emerging from the intricate molecular structure of
their components and from the interactions between them. Nevertheless, on
length scales very large compared to the size of an individual molecule and on
time scales very long compared to characteristic molecular times, it is
possible to derive [18] general hydrodynamic equations for any molecular
fluid where the dependence on the particular constituent molecules enters
only through a few specific parameters such as mass density, shear and bulk
viscosities, heat capacity, etc. The latter quantities are extremely difficult to
evaluate from first principles, and no satisfactory dynamical theory currently
exists for their computation, except in the limit of rather low densities [19].
Nevertheless, the important lesson for our study of long wavelength polymer
properties is the fact that many-body, collective characteristics of a fluid may
be summarized by a set of universal hydrodynamic equations.

In order to succeed in deriving long wavelength universal laws for
polymers, some guidance is needed in the selection of a suitable model. Again,
the analogy with the universal nature of hydrodynamics offers some insight.
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Consider the extreme example of a fluid composed of eclephants that obey the
laws of classical mechanics and that interact through elephant—elephant
potentials. Such a model, radical as it is, produces long wavelength
hydrodynamic equations identical to those of a model with realistic
intermolecular interactions; the only difference between the two treatments
occurs in certain parameters that are generally treated only empirically. In
the same way we anticipate that the desired long wavelength universal
polymer laws are derivable from models of varying levels of complexity and
faithfulness to the actual microscopic details of the polymer structure and
interactions.

C. A MINIMAL MODEL

The first step in developing theories of large length scale polymer properties
involves the introduction of a minimal model that adequately describes all
these polymer properties using the smallest possible number of phenomeno-
logical parameters. One of the simplest models of this kind views the
polymer as a random walk [20-24] of sequences of uncorrelated steps
corresponding to the spatial placement of the monomer units. This random-
walk polymer model successfully describes homopolymers under “ideal” or
theta conditions where A, vanishes. As described in Chapter 2, the models
adequately explain the empirical finding that Rg, Ry, and [n] are all
proportional to M'/2 at the theta point.

Away from the theta point, 4, no longer vanishes, and the power-law
exponents a for Rg, Ry, and [17] no longer equal 4 [3]. A more sophisticated
model with other features is therefore needed for these more general
situations. As discussed more fully in subsequent chapters, this additional
feature involves inclusion of interactions between the constituent monomers
on the polymer (the polymer—polymer interactions), leading to popular
models of polymers as self-interacting random walks [2, 9-15, 25, 26].

D. SHORT-RANGE CORRELATIONS AND FLEXIBILITY
IN POLYMERS

Somewhat more realistic models of polymers [1, 2, 4, 27, 28] under theta
conditions incorporate some degree of freedom of rotation about the single
bonds joining the monomers. For instance, let ¢ specify the angle of rotation
(say between R, and R;) about a particular C-C bond in (1.1). Then many
polymers have a potential energy [4] V(¢) arising from interactions between
the R, groups on the two bonded carbon atoms (and also between the
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Potential Energy
(=]
(=]

L

] L
240 360

¢

Figure 1.1. A schematic representation of the hindered rotational potential V(¢) as a function
of rotation angle ¢ about C-C single bonds. The minima correspond to the trans state t and the
gauche state g.
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neighboring bonded monomers) which is of the general form displayed in
Fig. 1.1, having three minima at the preferred orientations of the R, groups
(and the bonds to adjacent monomers) on the two bonded carbon atoms.
Models such as this one and others in which there are correlations between
the angles ¢ for neighboring bonds can be shown to be related to Markov
processes (see Chapter 2, Section 2-D-3) or to one-dimensional Ising models.
As a result they are amenable to exact solution [6].

A more subtle type of model contains repulsive interactions between
nonbonded monomers when the monomers approach each other closely
enough in space. The short-range interactions must be repulsive because two
different monomers cannot occupy the same region of space. These “excluded
volume” interactions introduce couplings between the degrees of freedom ¢,
for each of the monomers, leading to a many-body problem that cannot be
solved in closed form. A typical excluded volume interaction is depicted
schematically in Fig. 1.2 for a continuous chain model of a polymer. The two
interacting monomers are distant from each other along the chain but close in
space. The freedom of rotation about the bonds near these monomers can
result in short-range repulsive encounters between nearby monomers. In this
way excluded volume interactions couple the rotational degrees of freedom ¢,
of different monomers. Because these excluded volume interactions can, in
principle, occur between all pairs of monomers, separated by a sufficient
distance along the chain, the polymer excluded volume problem is evidently a
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Figure 1.2. Schematic representation of an excluded volume interaction for a continuous
polymer chain. Dotted lines designate segments close enough to interact.

many-body problem, and its intractability is compounded by chain connec-
tivity and short-range correlations {2, 25, 26]. Neither effect appears in the
treatment of excluded volume in small molecules [19].

E. STATISTICAL MECHANICS OF POLYMER INTERACTIONS
AND COARSE GRAINING

As noted earlier, our primary interest in this book is in flexible polymers
having some degree of freedom of rotation about the single bonds joining the
monomers. A single long polymer chain of this type possesses an enormous
number of different conformations (or polymer configurations). Given the
potentials describing hindered (or free) rotation about the single bonds, the
steric interactions between nearby bonds and the excluded volume interac-
tion, it follows from the general principles of statistical mechanics that the
(unnormalized) probability density of finding a particular chain conforma-
tion is given by the Boltzmann factor exp(— V) where 8 = 1/kgT, kg is
Boltzmann’s constant, and ¥ is the total potential energy evaluated for that
chain configuration. Thermodynamic properties of the polymer system and
the normalization factor for the chain-conformation probability density are
obtained from averages over all possible chain conformations with the weight
exp (—BV). This averaging is over all possible polymer degrees of freedom
for either a single polymer chain or for a collection of polymers at nonzero
concentrations. Because of the large number of degrees of freedom available
to the polymers, it will be appreciated that even the simplest, realistic models
of the long wavelength properties of polymers pose highly complicated
mathematical problems made worse by the presence of excluded volume.



