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EDITORS’ PREFACE

The present volume is the second of the GALCIT* series to appear after
World War II. Like its predecessors in the series its subject matter was
originally collected in response to the need for training the large numbers
of aeronautical engineers required by the national emergency. Since peace-
time interest in the compressibility phenomena of fluid motions appeared to
be even greater than that during the war, it seemed useful to rework the
earlier material into a systematic introduction to the field. In this process
advantage was taken of the information which became available only after
the war. The resulting treatment is believed to be as up to date as possible
in a subject which is developing as rapidly as compressible fluid hydrody-
namics, and in which military classification often remains in effect.

It is hoped that the volume may prove useful both to students who are
for the first time meeting the problems of compressible flow, and to engineers
and scientists who are actively working with such problems.

THEODORE VON KARMAN

CLARK B. MILLIKAN
January, 1947

* Guggenheim Aeronautical Laboratory, California Institute of Technology.



AUTHORS’ PREFACE

During the last few years compressibility effects have become more and
more important in aeronautical engineering as well as in related fields such
as turbine design. The subject, Aerodynamics of Compressible Fluids, has
been studied at great length by both pure mathematicians and “practical”
engineers, and the literature on the subject has become extensive. The
material presented in this book is designed to furnish the reader a back-
ground of fundamentals sufficient to enable him to understand or at least
to systematize the observed compressibility effects, and also to enable him
to approach the more mathematical literature of the subject. This double
purpose not only determined the material to be included but also dictated
the division essentially into two parts: a first part dealing with the basic
compressibility phenomena under simple geometrical conditions, which thus
involves relatively little mathematics, and a second part which is more
mathematical.

This book originated in a series of lectures first given in 1942, under the
sponsorship of the ESMWT, to members of the engineering staffs of the
various Southern California aircraft companies. War research and the fre-
quent absence of the authors from Pasadena delayed the completion of the
manuscript, but the material has been expanded and brought up to date.
In its present form, the book is the basis for a fifty-hour graduate course at
the California Institute of Technology.

Emphasis is placed almost exclusively upon the derivation and the mean-
ing of the fundamental aerodynamics relations. In other words, there has
been no attempt to produce a standard classroom textbook, so no problems
are given, and few practical examples are worked out. If the book is used
as a text, it is assumed that the instructor will choose examples best suited
to his particular group of students.

Of course, an essential difficulty was encountered in the wartime restric-
tions which made a presentation of recent test data impossible. In order to
avoid presentation of obsolete or unreliable data, it was decided to omit
reference to specific sets of test data almost entirely and to discuss experi-
mental results only in general terms. It is thus left to the reader who has
access to the confidential literature to compare the theoretical results with
experimental data. Since the technique of testing at high airspeeds is still
rather unsettled, it is felt that the omission of a presentation of large sets
of test data is not a serious drawback at the present time.
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V114 AUTHORS’ PREFACE

We are indebted to many members of the Galcit staff. In particular,
Messrs. S. Corrsin, J. Sternberg, H. Ashkenas, R. Schamberg, and J. Laufer;
and Mrs. Kate Liepmann assisted in the preparation of the book. We also
wish to thank Miss M. Ormesher for her patience in typing the manuscript,
as well as Drs. W. R. Sears of the Northrop Aircraft Co. and H. W. Emmons
of Harvard University for their valuable criticism.

Hans WoLrFcANG LIEPMANN

ALLEN E. Puckerr
Pasadena, California

January, 1947
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Part T

ONE-DIMENSIONAL MOTION OF A COMPRESSIBLE FLUID

In a large part of aeronautics, the flow of air around bodies may be studied
with sufficient accuracy by assuming the air density to be constant. The
major part of existing aerodynamic theory concerns computations where
this assumption is made. Under certain conditions, however, the air density
may vary sufficiently to cause the flow behavior to depart appreciably from
that predicted by the incompressible fluid theory. It is said then that com-
pressibility effects occur. The new flow behavior may be computed in some
cases in terms of corrections or alterations to known incompressible fluid
flow solutions; in other cases entirely new types of flow solutions are neces-
sary. In aerodynamics, compressibility effects generally become of engineer-
ing importance when speed changes (i.e., relative speeds) in the fluid, or of
bodies relative to the fluid, become appreciably large compared to the speed
of sound in the fluid (of the order of one half or more). The reasons for this
will appear later.

The introduction of this new variable, the density, into the hydrodynamics
problem requires a study of its relation to the other parameters defining the
condition of the air. These relations are essentially thermodynamic, so that
an examination of some basic thermodynamic concepts is necessary. It will
be recalled that in the solution of incompressible fluid flow problems, the
density could be eliminated in such a way that the computation of the flow
pattern became purely a kinematic problem. This is, of course, no longer
the case.

In general, the solution of a compressible fluid flow problem will consist in
finding the three unknown velocity components, the density, and the pres-
sure as functions of three space coordinates, say (x, v, z). We have available
for this purpose the five basic equations: three equations for conservation of
momentum in three directions, the equation requiring conservation of mass,
and the equation requiring conservation of energy. Thermodynamic con-
siderations introduce an additional parameter, the temperature, and one
additional equation, the equation of state, which furnishes a relation between
the three gas parameters.

Many of the characteristic features of the flow of a compressible fluid may
be studied, however, by investigating motion in one dimension. This means
that all quantities are assumed to vary extremely slowly in all directions but

1



2 ONE-DIMENSIONAL MOTION

one; or, d( ) /dy and 8( ) /dz are much smaller than d( ) /dx. In this way, all
parameters become functions of only one space variable, x. The results of
such a one-dimensional study are also applicable to more general flows,
because the flow within any one stream filament or stream tube of sufficiently
small diameter must correspond to a one-dimensional flow. The general
problem consists in finding the boundaries of these stream tubes.

The one-dimensional flow of a fluid is essentially that in a tube whose
radius of curvature is large, whose cross section changes only very slowly,
and across any section of which all parameters are essentially constant.
There are, as a matter of fact, many problems of engineering importance in
which these conditions are very nearly satisfied, so that the results of this
simple theory may be applied directly. However, they must be applied with
great caution in cases where the basic phenomena are actually associated
with non-uniformities of velocity or pressure across a section of the tube. In
such cases it is sometimes possible to apply the one-dimensional theory
results to properly defined averages of the velocity, density, and so on,
across the tube, but care must be exercised to avoid misinterpretation.

All the essential relations, including the flow changes through a shock
wave, between quantities in a three-dimensional stream tube—velocity,
pressure, and density—may be illustrated in the one-dimensional study.
This study may also include two-dimensional phenomena to the extent that
the direction of the flow may be changed abruptly through an oblique shock
wave, while the flow on either side remains essentially one-dimensional. In
Part I will be discussed all flows which may be treated under these simplify-
ing assumptions, and indications will be given of their application to certain
engineering problems, and also to the solution of more general flows.



CHAPTER 7

Basic Thermodynamics

1.1 Equation of State

As mentioned earlier, the addition of the density to the parameters defin-
ing the motion of a fluid requires investigations of its relation to the other gas
parameters. In this chapter will be reviewed briefly those elementary thermo-
dynamic concepts necessary to this investigation in the form most useful to
the hydrodynamicist.

The condition or “state” of a fluid may be defined by its evident and
measurable properties: pressure p, density p, and temperature 7. Experi-
ment shows that only two of these are independent; this means that in
general an equation of the sort

F(P; Py T) =0 (1'1)

must exist. This is known as the equation of state of the fluid. The exact
form of this equation has been determined for various gases by experiment,
and also theoretically.

The elementary kinetic theory of gases supposes a gas to consist of small
perfectly elastic particles, representing the gas molecules, moving in random
paths at very high speeds and colliding at intervals with each other and with
the walls of their container. The force they exert through these collisions
against any solid surface is observed as the pressure of the gas. The kinetic
energy of their random motion is proportional to the temperature. With this
idealized model of a gas, an equation of state may be deduced. In other
words, by applying Newton’s laws to the motion of the particles, it is possi-
ble to find a relation between the number of particles in a given volume
(density), their velocity and hence kinetic energy (which is proportional to
temperature), and the frequency and force of their collision with a wall
(pressure). It is apparent that when two of these data are given, the third
must be determined. If the molecules are far enough apart so that inter-
molecular forces are negligible and their own volume is negligible compared
to the space they occupy, then the law is found to be

p = pRT (1-2)
where R is a constant for the gas. If these requirements are met and the gas

obeys this law, it is said to be a perfect gas. It is evident that the require-
3



4 BASIC THERMODYNAMICS

ments will be met only if the gas density is sufficiently low for large distances
to exist between molecules.

Charles and Boyle arrived at this law experimentally, so it is often known
as the Charles-Boyle law. For air the gas constant is

R = 1715 ft?[sec? °F

where p is pressure in pounds per square foot, p is mass (slugs, or 1b sec? ft—1)
per cubic foot, and 7" is the temperature in degrees Rankine. The absolute
zero of this temperature scale is located at —460° on the usual Fahrenheit
scale. This value of R is equal to the conventional engineering value times
the acceleration of gravity, g, since the density appears in units of mass, i.e.,
force divided by g.

When the density of a gas becomes high, more complicated equations of
state can be devised to predict the variation of pressure with temperature
and density. In general, for air at ordinary atmospheric densities, the differ-
ence between these more exact laws and the perfect gas law is insignificant
for engineering purposes.

It is important to note that the equation of state is a general relation
between three of the parameters of the gas; any two of them are, as yet,
completely independent. It should also be pointed out that the condition or
state of a fluid may be defined by many other parameters besides tempera-
ture, pressure, or density. The equation of state will again provide a relation
between any three of them, so that any two may be regarded as independent.

1.2 First Law of Thermodynamics

The first law of thermodynamics is essentially a statement of the law of
conservation of energy. It states the fact that heat energy and mechanical
energy are equivalent and interchangeable. In fact, the kinetic theory of gases
indicates heat energy to be really
mechanical energy on a molecular
scale.

According to this law, if a quan-
tity of heat is introduced into a
closed system containing a gas, this
heat must either remain in the gas as
internal (heat) energy, or must reappear externally as work done on its sur-
roundings. In Fig. 1-1 let dQ, be heat introduced into the container from an
outside source, let £ be the internal energy of the gas in the container, and dW
be the work done by the gas on its surroundings. Then the first law states that

dQy = dE + dw (1-3)

where dE is the increase in internal energy of the gas.

dQ, —+— dE ——tdW

Fi1c. 1-1. Heat-work exchange.



FIRST LAW OF THERMODYNAMICS 5

The mechanical work done by the gas must result from a change in
volume. Consider the closed cylinder of Fig. 1-2 with a movable piston of
area A at one end, containing a gas at pressure p and volume v. Suppose the
piston is balanced by a force F, so that

F = pA

If now the piston moves to the right through a distance dx, the gas will do
work against the force I of amount

py—rt

dW = Fdx = pAd dx

or

v

dW = pdv (1-4)

Fic. 1-2. Reversible work.
where dv is the change in volume of the gas. The first law then states
dQo = dE + pdo (1-5)

A process such as this, in which the gas is very near equilibrium at all
times, is called a reversible process. The reversibility stems from the fact
that, being very near equilibrium, the process could proceed equally well in
either direction. It is in this case only that the external work done is p dv.
This force F could be utilized to lift a weight or do other useful work of
exactly the amount p dv. This would be the case only if F were infinitely
near to pA.

A process, no matter how slow in point of time, becomes irreversible as
soon as the gas is out of equilibrium with its surroundings by a finite amount.
1 L1 Suppose, for example, that the piston
- = in Fig. 1-3is restrained from moving by

a row of pegs while a force F, less than

=—r<pAa pA,actsonit. These pegs may be very

close together, and may be pulled out

one at a time very slowly, so that the

actual motion of the piston outward is

very slow. However, in the very short

time interval after the pulling of a peg, the piston must be subject to a finite

acceleration. If the piston moves a distance dx, the only work which appears
externally is dWW = F dx, so that the first law must state

dQy = dE + F d (1-6)

g
(=

1

F1c. 1-3. Irreversible work.

This could also be written

dQ0=dE+pdv—<p—§>dv



61 BASIC THERMODYNAMICS

or
dQo + (p - g—) dv =dE + pdv -7

In this equation the last term on the right is not useful work done, but really
internal work done by the gas. Not all of this appeared as useful work; in
fact an amount [p — (¥ /A4)] dv was wasted. This amount of work went into
accelerating the gas molecules uniformly during the brief instant that the
piston was out of equilibrium. In order for the gas to come to equilibrium
again, this energy of motion must be dissipated by internal friction into
heat.

Let the left-hand side of equation 1-7 be considered as consisting of a
quantity of heat d(Q, introduced from the outside, plus a quantity of wasted
energy coming from the inside of the gas itself. This energy supply is then,
as in equation 1:5, equal to dE + p dv. Apparently, the first law for both
irreversible and reversible processes can be written as

dQ = dE + pdv 1-8)

where now dQ is understood to consist of two parts, dQ, and the heat result-
ing from energy dissipation within the fluid. Only in the case of a reversible
process is dQ = dQ,. The first law has now been expressed in two forms, as
shown in equations 1-3 and 1-8.

1.3 Internal Energy

The internal energy of a gas is a function of its state, and therefore of any
two of the gas parameters. Hence,

oE JoE
dE = (5) dv + <6T) T (1:9)

A method of investigating the relative size of these derivatives was
devised by ]oule Using the apparatus shown in Fig. 1-4 he filled one of the
containers with a gas at high pressure
P and evacuated the other. The stop-
cock connecting the two was opened,
and the system was allowed to come to
equilibrium. From the first form of the
first law, it is obvious that, since no
heat was added from outside and no
external work was done by the sys-
tem, the change in internal energy must be zero. Joule observed that in this
experiment the change in temperature was practically zero. Since the dv in
equation 1-9 is certainly not zero, it may be concluded that (9E /dv); is

Vacuum

F1c. 1-4. Joule-Thompson experiment.
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nearly zero; that is, the internal energy of a gas is nearly independent of its
volume. Actually this is true exactly for a perfect gas, but not for any other;
the value of (9E /dv)y is related to the Joule-Thompson coefficient, which
gives the rate of temperature drop with pressure drop during this process.

Joule actually carried out his final experiment in a somewhat revised form,
using the steady-state flow in a pipe, but it is the same in principle.

The kinetic theory shows this to mean that the internal energy of a perfect
gas is contained entirely within the molecule itself, as energy of translation,
rotation, or vibration,and that the intermolecular forces are not important.

1.4 Specific Heats

If heat is added to a gas and the temperature rise is observed, the rate of
heat addition per degree temperature rise per unit mass of gas is almost a
constant. This rate, dQ /37, is called specific heat. Its value will depend on
the type of the process, i.e., its path in the p-v diagram. In particular, it will
have one value if the heating is carried out at constant pressure, another at
constant volume. We can find a relation between the specific heat at constant
volume, called C,, and the internal energy, by writing the first law as

OF OE
dQ = pdv + (ﬁ> dT + (£> & (1-10)

This relation is valid for any gas. If we heat with no volume change,

(g_g)v B (3—?), =G (1-11)

Therefore, the internal energy for a perfect gas in which (9E /dv)p = 0 canbe
written as

E = fC,,dT + Ey = C,T + E, (1-12)

The specific heat at constant pressure, C,, is obtained by writing the first
law as

dQ = d(pv) — vdp + CudT

This is valid only for a perfect gas. Thus

_ {39\ _dipw) .
C”_(aT),,_ » e, (113)

For a perfect gas, pv = RT, so that
Cp =R + Cv (1'14)
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The ratio of the specific heats is given a special name,
G

=T

(1-15;

Throughout the following chapters, the gas constants will be in mechani-
cal, rather than in thermal, units; thus the usual heat-work factor will be
included. The units of any constant are, after all, defined by the way in
which it enters an equation. There is considerable disagreement among the
authorities over the correct value of 7. It is probably most important to use
one value consistently; in the following work, we shall use v = 1.400, a
value which appears to be reasonably accurate near zero degrees Fahrenheit,
and which has the advantage of computational simplicity. The correspond-
ing specific heat will be C,, = 5997 ft*/sec? °F.

The internal energy of a molecule may be divided among its several
degrees of freedom in translation and rotation.

It is a basic principle in classical kinetic theory that the internal energy of
each degree of freedom of the individual molecules of a gas equals (}9)k,7,
where k., is the Boltzmann constant. If there are 7 molecules of gas per unit
mass, then #k, = R. The internal energy per degree of freedom per unit mass
is then RT /2. If there are N degrees of freedom,

NRT
=——=C,0T
2
or
NR
Swis,
Then
NR N
C,=—+4+R=|\—+1)R
N0 o <2+>
and
N + 2
Y= I (1-16)

A monatomic gas such as helium has only three degrees of freedom in
translation, so

v =167
Air is a mixture of gases, in approximately the following proportions.
Nitrogen 78.06 per cent
Oxygen 21.0 per cent

Argon 0.94 per cent
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Since the two principal components, oxygen and nitrogen, are diatomic gases
the properties of air follow very closely that type of molecule. A diatomic
molecule has five degrees of freedom—three in translation and two in rota-
tion; rotation about the axis connecting the two atoms can be ignored as the
moment of inertia of the molecule about this axis is very small. In this case
the kinetic theory predicts

vy = 1.40

which is very nearly correct. The agreement is not so good for gas molecules
with more than two atoms.

1.5 Enthalpy
Another function of the state of the gas can be defined by letting

h=p+E 1-17)
where 7 is called the enthalpy or total heat. Then

dh = pdv+vdp + dE
=dQ +vdp

Thus, if heat is added to the gas at constant pressure, then d& = dQ; that is,
all the heat added goes into increasing the enthalpy.

A “throttling” process in a pipe can be shown to result in constant
enthalpy. In Fig. 1-5 gas at pressure p; flows to the right through the porous
resistance plug P and emerges at pressure p,. The throttling consists of the
reduction in pressure as the gas flows through the porous plug. It is an

eI
—_—] PAENITEOn
SRS

Fic. 1-5. Throttling process.

irreversible process in which mechanical energy is dissipated or used up in
friction in the plug. The actual rate of flow of the gas through the passages
in the plug must be small; hence the kinetic energy due to the mean velocity
of the gas is negligible. As a unit mass of gas flows through the plug, work
101 s done on this unit mass, and it accomplishes work pyz,, making the net
work done equal to psvs — p121. Since no heat is introduced from outside,

0=EFE — E + pw — piuy

or

E, + poy = B + povs
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so that /1 = k. If previous results for a perfect gas are used, it is now possi-
ble to write

h = RT + C,T + E
or, if the enthalpy is measured from its value at T =10,
h=C,T (1-18)

1.6 Entropy

If some quantity F is a function only of the state of a gas, and if the gas
undergoes a process changing its state, the change
in F must be a function only of the initial and
final states, and not of the type of process. This
is obviously true, for instance, for temperature and
pressure. Mathematically speaking, this means that
a small increment in ¥ must be a perfect differential
function of two variables.

p
Fic. 1.6. Change of state in (a_F_ ) d <6F) T
paths. ap p + aT d

Suppose the gas is in a state represented by point 1in Fig. 1:6. Then if F is

T

-
-
1<==

a function only of the state of the gas, F» — Fy f dF, independent of the
path of integration. If the differential of the function F is given by
dF = M dp + N dT, this s equivalent to saying

f;dF=0=l£(Mdp+NdT)

where C is any closed contour in the plane. Green’s theorem shows that a
necessary and sufficient condition for this to be true is that

oM _on
aT ~ ap

if the derivatives are continuous and single valued. This condition is satis-
fied by

since

57 (ar) = 7)
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This is known to be true whenever F is an explicitly given function of p
and T'. However, it is conceivable that the derivatives M and N are given
such that the condition is not satisfied. For instance,

dQ = C,dT — vdp

Now (8C,/8p)r = 0and (9v/3T), # 0, so Q cannot be a function of T and p
only. This is physically obvious, since the heat added during a process
certainly depends on the nature of the process.

However, dQ can be made a perfect differential by multiplying by an
“integrating factor.” In the case of a perfect gas, for which pv = RT, it may
be seen that 1/7 is an integrating factor, for

—<=C,— —RZ (119)

which can obviously be integrated immediately. So, apparently, dQ /T is the
perfect differential of some quantity which is a function only of the state of
the gas. This quantity is called entropy, defined by

dQ
s = =%
T

It can be given as a function of p and T by integrating equation 119,
S =CplogT —Rlog p + S, (1-20)

The constant of integration S is not needed here because it simply estab-
lishes the datum from which the entropy is measured; but changes of entropy
are of prime interest. Changes in entropy may be written in the form
S-S5 = CplogZ —Rlog£
T, )

The dQ defining the entropy differential must be that used in the second
form of the first law, equation 1-8. It is therefore the sum of dQ, the heat
introduced from outside, plus any heat arising from dissipation of kinetic
energy into heat inside the gas.

If Qo is zero, i.e., the process is conducted with no addition of heat from
the outside, it is called adiabatic. This does not necessarily mean that
dQ = 0 however.

If dQ = dQ,, the process is reversible, because there is no dissipation. If
the process is both reversible and adiabatic, dQ = dQo = 0. In this case,
dS = 0, so the reversible adiabatic process is called an isentropic process.

Most gas processes occurring in hydrodynamics are adiabatic, but not all
are isentropic. The latter requires friction-free flow, so that the flow in a
boundary layer is not isentropic.



