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PREFACE

With the passage of approximately nine years since publication of the first
edition, this text has been transformed from the status of a newcomer to a
mature representative of heat transfer pedagogy. Despite this maturation,
however, we like to think that, while remaining true to certain basic tenets, our
treatment of the subject is constantly evolving.

Preparation of the first edition was strongly motivated by the belief that,
above all, a first course in heat transfer should do two things. First, it should
instill within the student a genuine appreciation for the physical origins of the
subject. It should then establish the relationship of these origins to the
behavior of thermal systems. In so doing, it should develop methodologies
which facilitate application of the subject to a broad range of practical
problems, and it should cultivate the facility to perform the kind of engineer-
ing analysis which, if not exact, still provides useful information concerning
the design and/or performance of a particular system or process. Require-
ments of such an analysis include the ability to discern relevant transport
processes and simplifying assumptions, identify important dependent and
independent variables, develop appropriate expressions from first principles,
and introduce requisite material from the heat transfer knowledge base. In the
first edition, achievement of this objective was fostered by couching many of
the examples and end-of-chapter problems in terms of actual engineering
systems.

The second edition was also driven by the foregoing objectives, as well as
by input derived from a questionnaire sent to over 100 colleagues who used, or
were otherwise familiar with, the first edition. A major consequence of this
input was publication of two versions of the book, Fundamentals of Heat and
Mass Transfer and Introduction to Heat Transfer. As in the first edition, the
Fundamentals version included mass transfer, providing an integrated treat-
ment of heat, mass and momentum transfer by convection and separate
treatments of heat and mass transfer by diffusion. The Introduction version of
the book was intended for users who embraced the treatment of heat transfer
but did not wish to cover mass transfer effects. In both versions, significant
improvements were made in the treatments of numerical methods and heat
transfer with phase change.

In this latest edition, changes have been motivated by the desire to
expand the scope of applications and to enhance the exposition of physical
principles. Consideration of a broader range of technically important prob-
lems is facilitated by increased coverage of existing material on thermal
contact resistance, fin performance, convective heat transfer enhancement, and
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compact heat exchangers, as well as by the addition of new material on
submerged jets (Chapter 7) and free convection in open, parallel plate chan-
nels (Chapter 9). Submerged jets are widely used for industrial cooling and
drying operations, while free convection in parallel plate channels is pertinent
to passive cooling and heating systems. Expanded discussions of physical
principles are concentrated in the chapters on single-phase convection
(Chapters 7 to 9) and relate, for example, to forced convection in tube banks
and to free convection on plates and in cavities. Other improvements relate to
the methodology of performing a first law analysis, a more generalized lumped
capacitance analysis, transient conduction in semi-infinite media, and finite-
difference solutions.

In this edition, the old Chapter 14, which dealt with multimode heat
transfer problems, has been deleted and many of the problems have been
transferred to earlier chapters. This change was motivated by recognition of
the importance of multimode effects and the desirability of impacting student
consciousness with this importance at the earliest possible time. Hence,
problems involving more than just a superficial consideration of multimode
effects begin in Chapter 7 and increase in number through Chapter 13.

The last, but certainly not the least important, improvement in this
edition is the inclusion of nearly 300 new problems. In the spirit of our past
efforts, we have attempted to address contemporary issues in many of the
problems. Hence, as well as relating to engineering applications such as energy
conversion and conservation, space heating and cooling, and thermal protec-
tion, the problems deal with recent interests in electronic cooling, manufactur-
ing, and material processing. Many of the problems are drawn from our
accumulated research and consulting experiences; the solutions, which fre-
quently are not obvious, require thoughtful implementation of the fools of heat
transfer. It is our hope that in addition to reinforcing the student’s understand-
ing of principles and applications, the problems serve a motivational role by
relating the subject to real engineering needs.

Over the past nine years, we have been fortunate to have received
constructive suggestions from many colleagues throughout the United States
and Canada. It is with pleasure that we express our gratitude for this input.

FRANK P. INCROPERA
West Lafayette, Indiana Davip P. DEWITT
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area, m?

cross-sectional area, m

free-flow area in compact heat exchanger
core (minimum cross-sectional area
available for flow through the core), m?

heat exchanger frontal area, m?

area of prime (unfinned) surface, m

nozzle area ratio

surface area, m?

acceleration, m/s?

Biot number

Bond number

molar concentration, kmol/m?>; heat
capacity rate, W/K

drag coefficient

friction coefficient

thermal capacitance, J/K

specific heat, J/kg - K; speed of light,
m/s '

specific heat at constant pressure,
I/kg - K

specific heat at constant volume, J /kg - K

diameter, m

binary mass diffusion coefficient, m?/s

hydraulic diameter, m

thermal (sensible) internal energy, J;
electric potential, V; emissive power,
W,/m?

Eckert number

rate of energy generation, W

rate of energy transfer into a control
volume, W

rate of energy transfer out of control
volume, W

rate of increase of energy stored within
a control volume, W

thermal internal energy per unit mass,
J/kg; surface roughness, m

force, N; heat exchanger correction
factor; fraction of blackbody radiation
in a wavelength band; view factor

Fourier number

friction factor; similarity variable

irradiation, W /m?; mass velocity,
kg/s - m?

Grashof number
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SYMBOLS

Graetz number

gravitational acceleration, m/s?

gravitational constant,
1kg - m/N -s?or
32.17 ft - 1b,, /lb, - s?

nozzle height, m

convection heat transfer coefficient,
W,/m? - K; Planck’s constant

latent heat of vaporization, J/kg

convection mass transfer coefficient, m/s

radiation heat transfer coefficient,
W/m? - K

electric current, A; radiation intensity,
W/m? - sr

electric current density, A/m?; enthalpy
per unit mass, J/kg

radiosity, W /m?

Jakob number

diffusive molar flux of species i relative
to the mixture molar average velocity,
kmol/s - m?

diffusive mass flux of species i relative to
the mixture mass average velocity,
kg/s - m?

Colburn j factor for heat transfer

Colburn j factor for mass transfer

thermal conductivity, W/m - K;
Boltzmann’s constant

zero-order, homogeneous reaction rate
constant, kmol /s - m?

first-order, homogeneous reaction rate
constant, s~}

first-order, homogeneous reaction rate
constant, m/s

characteristic length, m

Lewis number

mass, kg; number of heat transfer lanes
in a flux plot; reciprocal of the Fourier
number for finite-difference solutions

rate of transfer of mass for species i,
kg/s

rate of increase of mass of species i due
to chemical reactions, kg/s

rate at which mass enters a control
volume, kg /s



.

out

5'

X

Z3 %3

rate at which mass leaves a control
volume, kg/s

rate of increase of mass stored within a
control volume, kg /s

molecular weight of species i, kg/kmol

mass, kg

mass flow rate, kg/s

mass fraction of species i, p,/p

number of temperature increments in a
flux plot; total number of tubes in a
tube bank; number of surfaces in an
enclosure

Nusselt number

number of transfer units

molar transfer rate of species / relative to
fixed coordinates, kmol/s

molar flux of species i relative to fixed
coordinates, kmol/s - m?2

molar rate of increase of species i per
unit volume due to chemical reactions,
kmol/s - m?3

surface reaction rate of species i,
kmol/s - m?

mass flux of species i relative to fixed
coordinates, kg/s - m?

mass rate of increase of species / per unit
volume due to chemical reactions,
kg/s - m3

number of tubes in longitudinal and
transverse directions

dimensionless longitudinal and transverse
pitch of a tube bank

perimeter, m; general fluid property
designation

Peclet number (RePr)

Prandtl number

pressure, N/m?

energy transfer, J

heat transfer rate, W

rate of energy generation per unit volume,
W/m?

heat transfer rate per unit length, W/m

heat flux, W,/m?

cylinder radius, m

universal gas constant

Rayleigh number

Reynolds number

electric resistance, Q

fouling factor, m? - K/W

mass transfer resistance, s/m?>

residual for the m, n nodal point

thermal resistance, K/W

thermal contact resistance, K/W

cylinder or sphere radius, m

Sc
Sh
St
Sp. Si.

Xtd. ¢
Xid, 4
X1g, ¢

X

Symbols xv

cylindrical coordinates

spherical coordinates

solubility, kmol/m? - atm; shape factor
for two-dimensional conduction, m;
nozzle pitch, m; plate spacing, m

solar constant

Schmidt number

Sherwood number

Stanton number

diagonal, longitudinal, and transverse
pitch of a tube bank, m

temperature, K

time, s

overall heat transfer coefficient,
W/m?- K

mass average fluid velocity components,
m/s

molar average velocity components,
m/s

volume, m3; fluid velocity, m/s

specific volume, m? /kg

width of a slot nozzle, m

rate at which work is performed, W

Weber number

components of the body force per
unit volume, N/m>

rectangular coordinates, m

critical location for transition to
turbulence, m

concentration entry length, m

hydrodynamic entry length, m

thermal entry length, m

mole fraction of species i, C,/C

Greek Letters

a

&
€y

Em

thermal diffusivity, m?/s; heat exchanger
surface area per unit volume, m? / m?;
absorptivity

volumetric thermal expansion coefficient,
K- 1

mass flow rate per unit width in film
condensation, kg/s - m

hydrodynamic boundary layer thick-
ness, m

concentration boundary layer thick-
ness, m

thermal boundary layer thickness, m

emissivity; porosity of a packed bed; heat
exchanger effectiveness

fin effectiveness

turbulent diffusivity for heat transfer,
m?/s

turbulent diffusivity for momentum
transfer, m? /s



xvi

Symbols

& turbulent diffusivity for mass transfer,
m?/s

7 similarity variable

n fin efficiency

R fin temperature effectiveness

[} zenith angle, rad; temperature differ-
ence, K

M absorption coefficient, m~!

A wavelength, pm

B viscosity, kg /s - m

v kinematic viscosity, m2/s; frequency of
radiation, s !

p mass density, kg/m?; reflectivity

o Stefan-Boltzmann constant; electrical
conductivity, 1/Q - m; normal viscous
stress, N/m?; surface tension, N/m;
ratio of heat exchanger minimum
cross-sectional area to frontal area

[ viscous dissipation function, s™2

¢ azimuthal angle, rad

¥ stream function, m2/s

T shear stress, N/m?; transmissivity

w solid angle, sr

Subscripts

A,B  species in a binary mixture

abs absorbed

am arithmetic mean

b base of an extended surface; blackbody

c cross-sectional; concentration; cold fluid

cr critical insulation thickness

cond conduction

conv  convection

CF counterflow

D diameter; drag

dif diffusion

e excess; emission

evap  evaporation

f fluid properties; fin conditions; saturated

liquid conditions

fd fully developed conditions

g saturated vapor conditions

H heat transfer conditions

h hydrodynamic; hot fluid

i general species designation; inner surface
of an annulus; initial condition; tube
inlet condition; incident radiation

L based on characteristic length

! saturated liquid conditions

Im log mean condition

M momentum transfer condition

m mass transfer condition; mean value over
a tube cross section

max  maximum fluid velocity

0 center or midplane condition; tube outlet
condition; outer

R reradiating surface

r,ref  reflected radiation

rad radiation

S solar conditions

s surface conditions; solid properties

sat saturated conditions

sky sky conditions

sur surroundings

t thermal

tr transmitted

v saturated vapor conditions

x local conditions on a surface

A spectral

o0 free stream conditions

Superscripts

! fluctuating quantity

* molar average; dimensionless quantity

Overbar

surface average conditions; time mean

e |
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1.1

Chapter 1 Introduction

From the study of thermodynamics, you have learned that energy can be
transferred by interactions of a system with its surroundings. These interac-
tions are called work and heat. However, thermodynamics deals with the end
states of the process during which an interaction occurs and provides no
information concerning the nature of the interaction or the time rate at which
it occurs. The objective of this text is to extend thermodynamic analysis
through study of the modes of heat transfer and through development of
relations to calculate heat transfer rates. In this chapter we lay the foundation
for much of the material treated in the text. We do so by raising several
questions. What is heat transfer? How is heat transferred? Why is it important to
study it? In answering these questions, we will begin to appreciate the physical
mechanisms that underlie heat transfer processes and the relevance of these
processes to our industrial and environmental problems.

WHAT AND HOW?

A simple, yet general, definition provides sufficient response to the question:
What is heat transfer?

Heat transfer (or heat) is energy in transit due to a temperature difference.

Whenever there exists a temperature difference in a medium or between media,
heat transfer must occur.

As shown in Figure 1.1, we refer to different types of heat transfer
processes as modes. When a temperature gradient exists in a stationary
medium, which may be a solid or a fluid, we use the term conduction to refer to
the heat transfer that will occur across the medium. In contrast, the term
convection rtefers to heat transfer that will occur between a surface and a
moving fluid when they are at different temperatures. The third mode of heat
transfer is termed thermal radiation. All surfaces of finite temperature emit
energy in the form of electromagnetic waves. Hence, in the absence of an
intervening medium, there is net heat transfer by radiation between two
surfaces at different temperatures.

Conduction through a solid Convection from a surface Net radiation heat exchange
or a stationary fluid to a moving fluid between two surfaces
. T >T. . Te> T Surface, T)
T’ l ’ 7‘2 ) v
Moving fluid, Teo \\L
— J & 4 Surface, T2
; 9" a," \T
—> NI
— [—Ts )" 4—

Figure 1.1 Conduction, convection, and radiation heat transfer modes.



