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Preface

This book is based on lectures regularly taught in the fifth year of engineering diplomas
or basic graduate courses at the University of Liége and at the Universitat Politecnica
de Catalunya. The goal of the book is not to provide an exhaustive account of finite
elements in fluids, which is an extremely active area of research. The objective is
to present the fundamentals of stabilized finite element methods for the analysis of
steady and time-dependent convection—diffusion and fluid dynamics problems with an
engineering rather than a mathematical bias. Organized into six chapters, it combines
theoretical aspects and practical applications and covers some of the recent research
in several areas of computational fluid dynamics.
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grateful to Folco Casadei, Luigi Quartapelle and Vittorio Selmin who reviewed parts
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Introduction and
preliminaries

1.1 FINITE ELEMENTS IN FLUID DYNAMICS

Introduced in the late 1950s in the aircraft industry, see, for instance, the historical
outline by Felippa (2001), the finite element method (FEM) has emerged as one of
the most powerful numerical methods so far devised. Among the basic attributes
of the method which have led to its widespread acceptance and use are the ease in
modeling complex geometries, the consistent treatment of differential-type boundary
conditions and the possibility to be programmed in a flexible and general purpose
format.

Standard finite element approximations are based upon the Galerkin formulation of
the method of weighted residuals. This formulation has proven eminently successful
in application to problems in solid/structural mechanics and in other situations, such
as heat conduction, governed by diffusion-type equations. The reason for this success
is that, when applied to problems governed by self-adjoint elliptic or parabolic partial
differential equations, the Galerkin finite element method leads to symmetric stiffness
matrices. In this case the difference between the finite element solution and the exact
solution is minimized with respect to the energy norm, see, for instance, Strang and
Fix (1973). In practice, the Galerkin formulation is optimal in problems governed by
self-adjoint equations. In such cases, there exists a quadratic functional the minimum
of which corresponds to satisfying the partial differential equation governing the
problem at hand. For instance, in linear elasticity the equilibrium position of a
structure corresponds to the minimum of the quadratic functional expressing the
total potential energy of the system. Similarly, in steady heat conduction problems
the thermal equilibrium resulting from satisfying the Laplace or Poisson equation
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corresponds to the minimum of a quadratic functional expressed in terms of the
thermal flux, which physically represents the total thermal energy of the system.

The success of the Galerkin finite element method in structural mechanics, heat
conduction and other problems of the potential type provided, in the early 1970s,
a strong impetus for the utilization of the method in the simulation of problems in
fluid dynamics. It was thought that the significant advantages gained in structural
mechanics and diffusion-type problems would again be open to exploitation in the
area of fluid flow simulation. Actually, this proved to be an optimistic point of view,
especially with regard to modeling convection-dominated transport phenomena.

The main difficulty was due to the presence of convection operators in the for-
mulation of flow problems based on kinematical descriptions other than Lagrangian.
Convection operators are, in fact, non-symmetric and thus the best approximation
property in the energy norm of the Galerkin method, which is the basis for success in
symmetric cases, is lost when convection dominates the transport process.

In practice, solutions to convection-dominated transport problems by the Galerkin
method are often corrupted by spurious node-to-node oscillations. These can only
be removed by severe mesh (and time-step) refinement which clearly undermine the
practical utility of the method. This has motivated the development of alternatives
to the standard Galerkin formulation which preclude oscillations without requiring
mesh or time-step refinement. Such alternatives are called stabilization techniques
and have provided a major breakthrough in finite element modeling of problems in
fluid dynamics.

In truly transient situations, another important issue is to ensure the proper cou-
pling between spatial and temporal approximations. In fact, a stable and accurate
spatial representation will be quickly spoiled if the algorithm used for transporting
the solution in time is not of comparable accuracy. Space-time coupling is indeed
particularly crucial when convection dominates the transport process, due to the di-
rectional character of propagation of information in hyperbolic problems. Significant
progress has also been achieved in recent years in the development of algorithms for
accurately tracing the transient solution of highly convective transport problems.

1.2 SUBJECTS COVERED

The purpose of this book is to describe methods of finite element analysis for steady
and time-dependent convection—diffusion and fluid dynamics problems. The intent
is to provide an introduction to a variety of modern methods, while preserving a
pedagogical character through the presentation of simple worked examples.

The present chapter starts with a review of the basic kinematical descriptions
used in fluid mechanics and recalls the conservation laws for mass, momentumn and
energy in differential and integral forms. It then provides an introduction to the basic
ingredients of the finite element analysis of flow problems.

Chapter 2 introduces stabilized finite element methods for steady convection-
dominated transport problems (elliptic equations). The difficulties of Galerkin finite
elements are first recognized. This allows the design of possible cures for the node-
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to-node oscillations. The first alternative formulations proposed in the early 1970s to
improve the standard Galerkin method tried to reproduce in the finite element context
the effect of upwind differencing used in the finite difference context to stabilize the
oscillatory results obtained by central difference approximations. These early, but
not fully satisfactory, developments were quickly followed by more convincing finite
element procedures, such as the Streamline-Upwind Petrov—Galerkin (SUPG) and
the Galerkin/Least-squares (GLS) methods. Such methods do enjoy interesting sta-
bility and consistency properties and are nowadays widely used by the finite element
community for solving convection-dominated transport problems.

After presenting the difficulties and remedies of Galerkin finite elements in steady
convection-dominated problems, transient problems are introduced. In fact, Chapter
3 is devoted to pure convection. The scalar linear first-order hyperbolic equation
allows discussion of time-dependent situations. In these problems, the objective has
been to develop spatially stable and time-accurate finite element methods that take
into account the role of the characteristics in the wave-like solution of hyperbolic
equations. This has favored the development of solution algorithms in which at-
tention is focused on achieving a proper coupling between the spatial discretization
provided by the finite element method and the time discretization. Methods in this
class include various characteristic Galerkin techniques, some classical time-stepping
schemes and Taylor—Galerkin methods. The concept of accuracy and numerical sta-
bility is introduced. Moreover, spatial formulations especially suited for hyperbolic
problems (least-squares and discontinuous Galerkin) are also introduced, A simple
model problem also motivates a brief introduction to more recent techniques such as
space-time formulations.

Engineering practice goes beyond linear scalar equations. Chapter 4 extends the
concepts of the previous chapter to systems of nonlinear equations. In fact, it is con-
cerned with a particular problem: the finite element modeling of inviscid compressible
flows governed by the Euler equations of gas dynamics. Moreover, this extension
allows discussion of the specificities of numerical methods to capture shocks. First,
a brief review of the basic mathematical properties of nonlinear hyperbolic equations
is presented. Second, a simple two-step procedure is introduced for the explicit inte-
gration of the governing conservation equations of mass, momentum and energy. It
ensures second-order accuracy in the smooth part of the flow and, at the same time,
allows easy incorporation of a modulated dissipation to avoid oscillatory results in the
vicinity of shocks and other discontinuities in the flow. Then, various high-resolution
shock-capturing techniques are described and their implementation in the finite el-
ement context is illustrated by several worked examples. The chapter closes with
a discussion on the use of the Arbitrary Lagrangian—Eulerian (ALE) description for
the finite element simulation of problems involving fluid—structure interaction, Both
academic and industrial examples are proposed to illustrate the flexibility of the ALE
technique in the modeling of coupled transient dynamic problems.

Once the basis of time integration (hyperbolic equations), Chapters 3 and 4, and
spatial stabilization in steady problems (elliptic equations), Chapter 2, have been
discussed, both methodologies converge in transient convection—diffusion problems
(parabolic equations). Chapter 5 is still concerned with accurate time integration but
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has to deal with the second-order spatial operator introduced by the diffusion. This
allows the incorporation in the transient schemes of the spatial stabilization introduced
in Chapter 2, and, moreover, discussion of specific time integration techniques for
convection—diffusion problems in order to obtain high-order accurate schemes.

The generalization to nonlinear systems of equations is done in Chapter 6. It
provides an introduction to the finite element modeling of incompressible viscous
flows governed by the Navier—Stokes equations. And consequently, apart from the
numerical difficulties due to the presence of the nonlinear convective term, the incom-
pressibility condition is also a major issue in this chapter. The problem is formulated
in the primitive variables, namely velocity and pressure. Mixed and penalty methods
in the framework of Stokes and Navier—Stokes equations are introduced. And a brief
account is given of stabilization procedures capable of rendering convergent mixed
finite element formulations which are unstable in the traditional Galerkin approach.
To treat unsteady incompressible flows, a basic fractional-step projection method is
introduced and some variants of it are discussed. Emphasis is placed on the treatment
of the boundary conditions in each step of the time integration procedure and on the
stable treatment of the pressure/incompressibility phase. The chapter closes with
applications of the fractional-step method to forced and natural convection problems.

1.3 KINEMATICAL DESCRIPTIONS OF THE FLOW FIELD

In this section and the next one we summarize the continuum mechanics concepts that
are needed for the mathematical description of flow problems. Classical references
for the basic theory of fluid mechanics are Batchelor (1999), Landau and Lifshitz
(1959) and Lamb (1993).

An important consideration when simulating fluid flow problems by any numerical
method is the choice of an appropriate kinematical description of the flow field. The
algorithms of continuum mechanics make use of three distinct types of description of
motion: the Lagrangian description, the Eulerian description and the ALE description.

Lagrangian algorithms, in which each individual node of the computational mesh
follows the associated material particle during motion, are mainly used in structural
mechanics. Classical applications of the Lagrangian description in large deforma-
tion problems are the simulation of vehicle crash tests and the modeling of metal
forming operations. In these applications, the Lagrangian algorithms are used in
combination with both solid and structural (beam, plate, shell) elements. Numeri-
cal solutions are often characterized by large displacements and deformations and
history-dependent constitutive relations are employed to describe elasto-plastic and
visco-plastic material behavior. The Lagrangian description allows easy tracking of
free surfaces and interfaces between different materials. Its weakness is its inability
to follow large distortions of the computational domain without recourse to frequent
remeshing operations.

Eulerian algorithms are widely used in fluid mechanics. Here, the computational
mesh is fixed and the fluid moves with respect to the grid. The Eulerian formulation
facilitates the treatment of large distortions in the fluid motion and is indispensable for
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reference configuration current configuration

Fig. 1.1 Lagrangian description of motion.

the simulation of turbulent flows. Its handicap is the difficulty to follow free surfaces
and interfaces between different materials or different media (e.g., fluid—fluid and
fluid—solid interfaces).

ALE algorithms are particularly useful in flow problems involving large distortions
in the presence of mobile and deforming boundaries. Typical examples are problems
describing the interaction between a fluid and a flexible structure and the simulation
of metal forming processes. The key idea in the ALE formulation is the introduction
of a computational mesh which can move with a velocity independent of the velocity
of the material particles. With this additional freedom with respect to the Eulerian and
Lagrangian descriptions, the ALE method succeeds to a certain extend in minimizing
the problems encountered in the classical kinematical descriptions, while combining
at best their respective advantages.

1.3.1 Lagrangian and Eulerian descriptions

Two domains are commonly used in continuum mechanics: the material domain
Rx C RP=e, with ney spatial dimensions, made up of material particles X, and the
spatial domain R, consisting of spatial points .

The Lagrangian viewpoint consists of following the material particles of the con-
tinuum in their motion. To this end, one introduces, as suggested in Figure 1.1, a
computational grid which follows the continuum in its motion, the grid nodes being
permanently connected to the same material points. The material coordinates, X,
allow us to identify the reference configuration, R x .

In the total Lagrangian formulation, R x is considered fixed and it corresponds
usually to the configuration of the continuum at the initial time. In the updated
Lagrangian formulation, the reference configuration changes during the calculation
and generally corresponds to the configuration relative to the previous time (or load)
step.
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The motion of the material points relates the material coordinates, X, to the spatial
ones, x. It is defined by an application ¢ such that

¢ : Rx X [to.tema[ — Ra X [to; tanal

(X,1) — (X, 1) = (z,1), (D

which allows us to link X and & during time by the law of motion, namely
z==z(X,1), t=t,

which explicitly states the particular nature of ¢: first, the spatial coordinates &
depend on both the material particle, X, and time ¢, and, second, physical time is
measured by the same variable ¢ in both material and spatial domains. For every fixed
instant ¢, the mapping  defines a configuration in the spatial domain. Itis convenient
to employ a matrix representation for the gradient of ¢,

ox
% _ |3x
a(th) OT 1

where 07 is a null row vector and the material velocity v is

o
v(X,t) = 6-? . (1.2)

with lx meaning “holding X fixed”.

Obviously, the one-to-one mapping ¢ must verify det(8z/0X) > 0 (non-zeroto
impose a one-to-one correspondence and positive to avoid change of orientation in
the reference axes) at each point X and instant £ > t¢. This allows us to keep track
of the history of motion and, by the inverse transformation (X ,t) = ¢ ~(z,1), to
identify at any instant the initial position of the material particle occupying position
@ at time £.

Since the material points coincide with the same grid points during the whole mo-
tion, there are no convective effects in Lagrangian calculations: the material derivative
reduces to a simple time derivative. The fact that each finite element of a Lagrangian
mesh always contains the same material particles represents a significant advantage
from the computational viewpoint, especially in problems involving materials with
history-dependent behavior. These concepts are discussed in detail by Bonet and
Wood (1997) in their excellent textbook on nonlinear continuum mechanics for finite
element analysis. However, when large material deformations do occur, for instance
vortices in fluids, Lagrangian algorithms undergo a loss in accuracy, and may even
be unable to conclude a calculation, due to excessive distortions of the computational
mesh linked to the material.

The difficulties caused by an excessive distortion of the finite element grid are
overcome in the Eulerian formulation. The basic idea in the Eulerian formulation,
which is very popular in fluid mechanics, consists in examining as time evolves



