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KNOTS



PREFACE

Butterfly knot, clover hitch knot, Gordian knot, hangman’s knot, vi-
pers tangle—knots are familiar objects, symbols of complexity, oc-
casionally metaphors for evil. For reasons I do not entirely under-
stand, they were long ignored by mathematicians. A tentative effort
by Alexandre-Théophile Vandermonde at the end of the eighteenth
century was short-lived,! and a preliminary study by the young Karl
Friedrich Gauss was no more successful. Only in the twentieth century
did mathematicians apply themselves seriously to the study of knots.
But until the mid-1980s, knot theory was regarded as just one of the
branches of topology: important, of course, but not very interesting to
anyone outside a small circle of specialists (particularly Germans and
Americans).

Today, all that has changed. Knots—or more accurately, mathemati-
cal theories of knots—concern biologists, chemists, and physicists.
Knots are trendy. The French “nouveaux philosophes” (not so new
anymore) and postmodernists even talk about knots on television,
with their typical nerve and incompetence. The expressions “quantum
group” and “knot polynomial” are used indiscriminately by people
with little scientific expertise. Why the interest? Is it a passing fancy or
the provocative beginning of a theory as important as relativity or
quantum physics?

Vil



Vil PREFACE
R AL S S T L R T T T T e

This book addresses this question, at least to some extent, but its
aim is certainly not to provide peremptory answers to global inquiries.
Rather, it presents specific information about a subject that is difficult
to grasp and that, moreover, crops up in many guises, often imbued
with mystery and sometimes with striking and unexpected beauty.

This book is intended for three groups of readers: those with a solid
scientific background, young people who like mathematics, and oth-
ers, more numerous, who feel they have no aptitude for math as a re-
sult of their experience in school but whose natural curiosity remains
intact. This last group of readers suffers from memories of daunting
and useless “algebraic expressions,” tautological arguments concerning
abstractions of dubious interest, and lifeless definitions of geometric
entities. But mathematics was a vibrant field of inquiry before lacklus-
ter teaching reduced it to pseudoscientific namby-pamby. And the
story of its development, with its sudden brainstorms, dazzling ad-
vances, and dramatic failures, is as emotionally rich as the history of
painting or poetry.

The hitch is that understanding this history, when it is not reduced
to simple anecdotes, usually calls for mathematical sophistication. But
it so happens that the mathematical theory of knots—the subject of
this book—is an exception to the rule. It doesn’t necessarily take a
graduate of an elite math department to understand it. More spe-
cifically, the reader will see that the only mathematics in this book are
simple calculations with polynomials and transformations of little di-
agrams like these:

B B B



PREFACE 1X

Readers will also have to draw on their intuition of space or, failing
that, fiddle with strings and make actual knots.

My desire to avoid overly abstract and technically difficult mathe-
matics led me to leave out completely the most classical tool of the
theory of knots (and the most efficient at the early stages), the so-
called fundamental group. The first successes with the theory—those
of the mathematicians of the German school (N. G. Van Kampen, H.
Seifert, M. Dehn), the Dane J. Nielsen, and the American J. W. H. Al-
exander—were based on the judicious use of this tool. Their work will
barely be mentioned here.

Given the diversity of the topics tackled in this book, I have not
tried to provide a systematic and unified exposition of the theory of
knots; on the contrary, various topics are scattered throughout the
chapters, which are almost entirely independent of each other. For
each topic, the starting point will be an original idea, as a rule simple,
profound, and unexpected, the work of a particular researcher. We will
then follow the path of his thinking and that of his followers, in an at-
tempt to understand the major implications of the topic for contem-
porary science, without going into technical details. Accordingly, the
chapters are ordered more or less chronologically. But I have striven to
minimize cross-references (even if it means repeating certain pas-
sages), so that the chapters can be read in whatever order the reader
chooses.

Betore I review the topics taken up in each chapter, it is worth men-
tioning that prior to becoming the object of a theory, knots were asso-
ciated with a variety of useful activities. Of course, those activities are
not the subject of this book, but talking a little about their practical
charms will make it easier to glimpse the beauty of the theory.
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Since Antiquity, the development of knot making was motivated by
practical needs, especially those of sailors and builders. For each spe-
cific task, sailors invented an appropriate knot, and the best knots sur-
vived, passing from generation to generation (see Adams, 1994). To tie
a rope to a rigid pole (a mooring or a mast), one uses the clover hitch
knot (see Figure P.1a), the rolling hitch knot (b), or the camel knot (c);
to tie two ropes together, the square knot (d) or the fisherman’s knot
(f) (when they are the same size) or the sheet bend (e) (when one rope
is thicker than the other). And there are many other knots adapted to
these special tasks (see Figure P.2). Sailors use knots not only to moor
boats, rig sails, and hoist loads, but also to make objects as varied as
the regrettably famous “cat o’ nine tails” and straw mats woven in
Turk’s head knots (Figure P.2b).

In the Age of Enlightenment (in England even earlier), oral trans-
mission of maritime knot making was supplanted by specialized
books about knots. One of the first authors in this genre was the Eng-
lishman John Smith, much better known for his romantic adventures
with the beautiful Indian princess Pocahontas. At the same time, the
terminology associated with knots became codified; it was even the
subject of a detailed article in Diderot’s and d’Alembert’s Enclopédie.

Sailors were not the only inventors of knots. The fisherman’s hook
knot (Figure P.2f), the alpinist’s chair knot (d), the engineer’s constric-
tor knot (c), and the knitter’s rice stitch (e) are only a few examples
among many. The classic reference for knot making is Ashley’s famous
Book of Knots (1944). A few knots in particular derive from one of the
greatest technological inventions of the Middle Ages: the pulley (Fig-
ure P.3a), together with the compound pulley (b and c). This work-
saving device, a sort of Archimedes’ lever with ropes, unites two major
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Figure P.2. Other knots.
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Figure P.3. Pullies and a hoist.

inventions of Antiquity: the wheel and the rope. It is used to pull or to
lift all kinds of loads, usually also attached with the help of suitable
knots. Thanks to knots, the rope became the universal technological
tool of the age.

The technology for producing ropes (and cables) themselves—
braiding—became very important. Fibers (once made of plants such
as hemp, but synthetic in our times) had to be twisted into threads
that were then braided into thicker strands, called lines, which in turn
were braided in a specific way (generally involving three lines) to make
a rope (see Figure P.4). The procedure for making cables is more com-
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Figure P.4. Anatomy of a rope.

plex and involves four (or more) levels of cords, lines, and braided
ropes. For the mathematician, the technology of braiding is the model
for a basic idea in topology (as well as in mechanics)—the braid—
which we will discuss in detail in Chapter 2.

Utilitarian and technological considerations aside, knots also have
an aesthetic, mysterious, and magical aspect. As far as I know, it is pre-
cisely this feature of knots that is responsible for their first traces in
our civilization. I have in mind the remarkable representations of
knots on the megaliths and burial stones engraved by Neolithic peo-
ples, in particular the Celts, during the fourth century B.c. Actually,
these are chains of knots connected to one another (mathematicians
call them links), as shown schematically in Figure P.5. We do not know
the mystical and religious meaning of the links represented on
menhirs (upright monuments also known as standing stones), but the
geometric technology (based on regular figures) used to create these

bewitching designs has been decoded by mathematicians (see Mercat,
1996).
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Figure P.5. Links on a megalith.

Neolithic peoples were not alone in using links to decorate their ob-
jects of worship. Links are also found in the Middle Ages, in illumi-
nated manuscripts, in the architecture of certain Eastern civilizations
(friezes and other ornaments of the famous Alhambra palace in Spain

are examples), and in the decorative elements framing icons in ortho-
dox churches in northern Russia.
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To end this overview of knots on a lighter note, think of the essen-
tial role they play in the magician’s arsenal: knots that aren’t, ropes
that come undone instead of strangling the sexy magician’s assistant,
and so on. Some of these tricks (which amateur magicians can do) are

described, from a mathematical vantage point, elsewhere (Prasolov
and Sossinsky, 1997; Walker, 1985).

Let us move on to a summary of this book, to give a brief idea of what
1s to come and to allow those who don’t intend to read the book from
beginning to end to choose which chapters they wish to take in.2 (Re-
member that the chapters are relatively independent.)

The first chapter has to do with the beginnings of the mathematical
theory of knots, which was not the work of mathematicians—what a
shame for them!—but that of physicists, more precisely, William
Thomson (alias Lord Kelvin). The starting point (dating from around
1860) was Thomson’s idea of using knots as models for the atom,
models he dubbed “vortex atoms.” To study the theory of matter from
this point of view, he had to begin with knots. Fortunately for the self-
esteem of mathematicians, Kelvin’s theory ran aground and was soon
forgotten, but not without leaving to posterity a series of problems
(the Tazit conjectures), which physicists were unable to solve at the time
but mathematicians took care of a century later. The chapter not only
deals with this spectacular failure of a beautiful physical theory, it also
reviews various aspects of knot theory: Tait’s tables of alternating
knots, the superb wild knots, and Antoine’s necklace. This last object
provides us with an opportunity to talk about . . . blind geometers.

The chapter ends with a brief discussion of the reasons for the failure
of Thomson’s theory.
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The second chapter deals with the fundamental connection be-
tween knots and braids discovered by the American J. W. H. Alexander
a half-century after Kelvin’s abortive start. The mathematical theory of
braids, which was formulated about the same time by the young Ger-
man researcher Emil Artin, is more algebraic (and consequently sim-
pler and more efficient) than knot theory. The connection in question
(a geometric construction of childlike simplicity: the so-called closure
of braids) enables one to obtain all knots from braids—Alexander’s
result. And because Artin rapidly established the classification of
braids, it was natural to try to deduce the classification of knots from
it. Efforts in this direction were unsuccessful, but they gave nice re-
sults, among which are the algorithms and software recently devised
by French researchers.

In Chapter 3, I present a clever but simple geometric construction
by the German mathematician Kurt Reidemeister, which reduces the
study of knots in space to their planar projections (called knot dia-
grams). This gives us a chance to talk a little about catastrophe theory,
encoding of knots, and working with knots on the computer. We will
see that an algorithm invented by Reidemeister’s compatriot Wolfgang
Haken to determine whether a given knot can be untied does indeed
exist, though it is very complex. That is because untying a knot often
means first making it more complicated (alas, also true in real life).
Finally, the functioning of an unknotting algorithm (which is fairly
simple but has the disadvantage of futility when it comes to trying to
unknot non-unknottable knots) will be explained: there, too, the
modern computer does a better job of unknotting than we poor Homo
sapiens,

Chapter 4 reviews the arithmetic of knots, whose principal theorem
(the existence and uniqueness of prime knots) was demonstrated in
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1949 by the German Horst Schubert. The curious resemblance be-
tween knots equipped with the composition operation (placing knots
end to end) and positive integers (with the ordinary product opera-
tion) excited all sorts of hopes: Could knots turn out to be no more
than a geometric coding of numbers? Could the classification ot knots
be just a plain enumeration? In Chapter 4 I explain why such hopes
were unfulfilled.

Chapter 5 brings us to an invention that seems trite at first. It is due
to the Anglo-American John Conway, one of the most original mathe-
maticians of the twentieth century. As in Chapter 3, we will be dealing
with small geometric operations carried out on knot diagrams. Con-
trary to Reidemeister moves, Conway operations can change not only
the appearance but also the type of the knot; they can even transtorm
knots into links. They make it possible to define and to calculate, in an
elementary way, the so-called Alexander-Conway polynomial® of a knot
(or link). These calculations provide a very easy and fairly efficient
way to show that two knots are not of the same type, and in particular
that some knots cannot be unknotted. But this method is probably not
what the reader of this chapter will find most interesting: a biological
digression explains how topoisomerases (recently discovered special-
ized enzymes) actually carry out Conway operations at the molecular
level.

Chapter 6 presents the most famous of the knot invariants, the
Jones polynomial, which gave new life to the theory fifteen years ago.
In particular, it allowed several researchers to establish the first serious
connections between this theory and physics. Oddly, it is the physical
interpretation* of the Jones polynomial that gives a very simple de-
scription of the Jones invariants, whose original definition was far
from elementary. This description is based on a tool—the Kauftman
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bracket—that is very simple but that plays no less fundamental a role
in modern theoretical physics. This chapter contains several digres-
sions. In one of them, readers will learn that the main ingredient in
the Kautfman bracket was already known in the Neolithic age by the
Celtic artists mentioned earlier.

Chapter 7 is devoted to the last great invention of knot theory,
Vassiliev invariants. Here, too, the original definition, which drew on
catastrophe theory and spectral sequences,” was very sophisticated,
but an elementary description is proposed. Instead of complicated
mathematical formulas, readers will find abbreviated calculations in-
volving little diagrams, along with a digression on the sociological ap-
proach to mathematics.

The eighth and final chapter discusses connections between knot
theory and physics. Contrary to what I tried to do in the other chap-
ters, here I could only sketch out the most rudimentary explanations
of what 1s going on 1n this area. I had to use some new technical terms
from mathematical physics without being able to explain them prop-
erly. But I am convinced that even readers closer to the humanities
than to the sciences will succeed in getting through this chapter. Even
if they cannot grasp the precise meaning of the terms and equations,
they can focus on the gist of the discussion, on the role of coinci-
dences, and on the dramatic and emotional side of contemporary re-
search.

The brilliant beginnings of knot theory, over 130 years ago, were
marked by a ringing failure—as a physical theory of matter—but the
concepts were revived thanks to the repeated efforts of mathemati-
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cians, whose only motivation was intellectual curiosity. Progress re-
quired new, concrete ideas. And the ideas came, springing from the
imagination of the best researchers, often sparking exaggerated hopes.
But every failure made it easier to grasp the remaining problems, mak-
ing the final goal ever more attractive. Today we are in a situation sim-
ilar to that of 1860: some researchers think, as William Thomson did,
that knots play a key role in the basic theory of the structure of matter.
But that is not to say that we are back at the beginning: the spiral of
knowledge has made a full loop, and we find ourselves at a higher
level.

The theory of knots remains just as mysterious and vibrant as ever.
Its major problems are still unsolved: knots continue to elude efforts
to classify them effectively, and still no one knows whether they pos-
sess a complete system of invariants that would be easy to calculate.
Finally, the basic role knots are supposed to play in physics has not yet
been specified in a convincing way.



