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1. ABSTRACT

This paper describes how speech recognition in the presence of F-16 jet cockpit noise can be performed using a
scquence of three units - an auditory model and two neural models. A method for noise reduction in the cepstral
domian based on a self-structuring universal approximator is proposed and tested on a large database of isolated
words contaminated with jet noise. This approach is a potential alternative to traditional recognition methods for
noisy speech and makes noise reduction possible in all three models as in the system in [1]. The first model performs
a spectral analysis of the input speech signal. The second model is a Self-structuring Neural Noise Reduction
(SNNR) model, which is an alternative to the noise reduction model [1] presented at IICNN91. The noise reduced
output from the SNNR network is propagated through the speech recognizer consisting of a set of Hidden Control
Neural Networks (HCNN).

2. INTRODUCTION

Signals from digital signal processing systems are often corrupted by stationary or non-stationary noise and noise
reduction is thus necessary. An interesting new non-parametric approach to noise reduction is the use of
connectionist models [1],[2]. Noise reduction can be considered as a non-linear mapping from a noisy signal space
to a noise-free signal space. Hornik, Stinchcombe and White [5] have proved that multilayer feedforward neural
network models are universal approximators i.e., they are capable of representing arbitrarily accurate approximations
to arbitrary mappings, if the models are sufficiently complex. Halbert White [6] has proved that these approximations
are learnable using universal approximators. The theoretical conclusion is thus that a complex non-linear mapping
from a noisy signal space to a noise-free signal space should be possible and learnable using a universal
approximator.

The application described in this paper is speech recognition in noise. As an introduction two connectionist
approaches for noise reduction will be described. Noise redugljgn. can-be-performed directly on the noisy speech
samples using Tamura and Waibels Time Domain Noise Red{cpor I MR Pad®drk [2]. At DCNNO1 we presented
an alternative approach (1], which is based on a concatenatign'Pftah ‘FadRoty“nfode]l and two neural models for
speech recognition of isolated words in noise. Noise is reducea pyRgine EIRMIrNose Reduction multilayer neural
(CNR) network. The output from the CNR network is input jode neursl n®tworl classifier. The CNR network is
a general noise reduction model usable in both isolated and qpoggmousfnoga® sbeech recognition systems.

The above mentioned noise reduction systems are based on tr imng, peural model with fixed model architectures,
which are selected before training. A neural model with a selfistrugfuring ar@fitedture established during training
would be a better solution. This paper presents a noisy speedh fEbNenition metdnd based on three models - an
auditory model, the SNNR network and a Hidden Control Neural Classifier. During training the SNNR network
builds a network architecture and this can be controlled by the performance function, which measures the difference
between targets and target estimates. Thus a near optimal networ architecture can be constructed during training,
see the following sections.
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3. SPEECH RECOGNITION IN NOISE USING THE SNNR NETWORK

The speech recognition and noise reduction system is illustrated in figure 1 and described in the following. The
system consists of a concatenation of three models - an auditory model, a SNNR network and a Hidden Control
Neural Classifier.

3.1 Homomorphic preprocessing

LPC-based cepstral analysis is a widely used preprocessing technique in speech recognition systems. This method
and cepstral analysis based on an auditory model were compared in [1] as preprocessing for the CNR network, and
we found that the auditory model was more noise robust than the traditional LPC-based cepstral analysis module,
presumably due to the critical-band filtering in the auditory model. Therefore we only apply the auditory model in
this work, see figure 1. Hermansky's auditory model [7] was sclected. The noise corrupted speech signal 3(n)
sampled at 8 kHz is analysed every 10 msec and 256 samples is input te the first stage, which performs a critical-
band filtering. The output from stage three is an "auditory spectrum” 2 consisting of 30 filter outputs, which are
transformed into "cepstral” coefficients using four steps. Details can be found in [1]. Fzom these coefficients 12 delta
cepstral coefficients are calculated. Thus the input to the SNNR network is a homomorphic vector consisting of 12
cepstral and 12 delta cepstral coefficients. The output from the preprocessing module for each word pattern is a
sequence of noisy homomorphic vectors. The sequence is time normalized into a sequence of K (= 40) noisy
homomorphic vectors, where j is an index for the j’te input pattern:

M, = (@(1, )., ). ) )

The corresponding sequence of K noise-free homomorphic vectors is given by:

M; = [m(1, j)..m(k, j)..m(K j)] )
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Figure 1: The noise reduction and speech recognition system. ri(k,j) is a noisy homomorphic vector from (1). 1‘711
is an estimate of the sequence M, of noise-free homomorphic vectors. The SNNR network is described in details
in figure 2.

I1-280



3.2 The Self-structuring Neural Noise Reduction (SNNR) model

The noise reduction model in [1] is non-self-structuring, because the network architecture is selected before training.
As a starting point for an alternative approach we have selected the Cascade-Correlation network [3]. We have tried
different model modifications described in the following. The proposed architecture in figure 1 is denoted as the
Self-structuring Neural Noise Reduction (SNNR) network.

3.2.1 Model training and test

Input 10 the SNNR network architecture is 24 noise contaminated coefficients and before training the network has
the architecture illusirated in figure 2A. The number of output (linear) Processing Elements (PEs) are equal to the
number of input terminals, because the goal is to learn the network to perform a non-linear autoassociative mapping
baiween each pair of noisy homomorphic vector in (1) and the corresponding noise-free homomorphic vector in (2).

Outputs
lnputs : :
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pats T T 7

Figure 2: The self-structuring network. Boxed connections are frozen and x connections are trained repeatedly. (A)
Network architecture before training. (B) Training has started. One hidden PE has been added and a candidate PE
is tested. (C) A pool of PE candidates (D) After training. One of the SNNR networks we have applied. (E) Example
of fan-in reduction. No x indicate no weight.
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Before training the SNNR network architecture is equal to the minimal network in figure 2A. Then the network
automatically trains and adds new hidden PEs onc by one constructing a cascade multilayer structure as indicated
in figure 2B. When a hidden PE is added to the network, its input weights are frozen. Based on all output PEs the
error function E is calculated as in multilayer perceptron networks. For each candidate PE the correlation between
V, the candidate output value and, E,, the residual output error observed at an output PE is calculated. The
correlation function S is the summation of the correlation values for all training patterns and for all output PEs. The
pseudo code in this section summarizes the training procedure [3].

Initialize weights

While E large do

While E continues to decrease do
Train output weights

Create a pool of new PE candidates

While S continues to increase do
Train each candidate weights

Select the PE candidate with the largest S
Install this PE and freeze weights

Initialize this PE's output weights
with minus the correlation

Figure 2C illustrates how a pool of new PE candidates looks. This pool is PEs with different input-output relations
¢.g. sigmoidal or gaussian and thus a larger area of the weight space is investigated during training. The network
determines its own size and topology based on the performance measure E and the definition of the stop criteria
in the loop "While E large do’. The training of the network is fast due to the fact that weights are frozen, thus there
is no aeed to back-propagate through hidden PEs. Therefore we can use a single-layer training algorithm for this
muitilayer network! After training the SNNR network this is applied by feed forward recall i.e. forward pass of the
noisy input. Figure 2D gives an example of one of the SNNR networks we have applied using only 5 hidden PEs.

322 Model reduction

We consider the self-structuring neural model as a very powerful model, compared to non-self-structuring models.
The only disadvantage is in applications demanding many hidden PEs, the network then becomes deep and the PEs
get high fan-in. We have defined and tested a set of possible strategies to minimize fan-in. Some of the possible
heuristic modifications of the training procedure are: (Method 1: Full fan-in.) Method 2: For the selected candidate
PE: Install only weights larger than w,. Method 3: Set the fan-in for all candidate PEs to f,. Fan-in from some of
the first hidden PEs are thus eliminated. Method 4: Define fan-in for each candidate PE to f, randomly selected
input connections. See figure 2E.

We assume that a test of these methods on the well known and difficult "two-spirals” benchmark [3] is a good
evaluation of these. The solution of the two-spirals problem is to separate two interlocking spirals. For each method
50 models were trained to solve the problem and the results in table 1 are the average performance.

Deleting small weight connections is the best method and this result seems reasonable, because these connections
assumably transmit the smallest amount of information. These simulations indicate that simplified model reduction
without considerable performance loss is possible. The training time for each method was approximately the same
as for the network with full fan-in. Future experiments with the SNNR network should include model reduction, if
deep networks are developed during training,
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I e
1 Full fan-in 19 298
2 w, = 0.4 18 218
2 w, =10 20 187
8 fi=11 25 398
4 fi=11 20 247

Teble 1: TFor each method 50 models were gencrated and average number of PEs
and weights were calcuiated. All weights below w, were removed before
installation: of a candidate PE using method 2. f, = constant number of fan-in
connections 1o candidate PEs using method 3 or 4.

3.3 Speech recognition

In our previous noisy speech recognition work [1) we selected a multilayer neural network for the recognition task.
Speech 1s output of a non-linear time-varying system. The Hidden Control Neural Network [9] is a more powerful
recognizer, because it can model linear /non-linear and time-varying systems in contrast to standard multilayer neural
networks capable of modelling linear/non-lincar time-invariant systems. The speech recognizer consists of 10 small
HCNNG, one for each word pattern, see figure 1.

4. EXPERIMENTS AND RESULTS

The databases applied, cxperiments performed and results achieved are presented in the following sections. We
would like to cmphasize that these results are preliminar and can be improved as indicated in the last section.

The training and test database for the experiments were selected from a multi-speaker speech database containing
approx. 1600 isolated Danish words, i.e. the digits 0-9 pronounced by males and females. The training database
contained 880 words from 22 females and 22 males. The test database contained 800 words from 20 females and
20 males. The noise was extracted from a CD-ROM, produced by IP-TNO [4]. Non-stationary F-16 jet cockpit noise
was chosen and selected randomly from the CD-ROM for the experiments. The speech and noise were added at
five different signal-te-noise ratios: 21, 15, 9, 3 and 0 dB. Only results with SNR of =, 21 and 0 dB are presented
in the following. Initially training of the SNNR network was based on only one version of the training database with
a specific SNR, see table 2, Method A.

SNR in dB oo 21 0
= SNNR model 94.8 66.4 15.3
+ SNNR model (Method A) - 81.9 40.4
+ SNNR model (Method B) - 91.5 79.8

Table 2: The first two rows show the recognition results for the system in figure 1 on the test database in percentage
without and with the SNNR network. The training of the SNNR network was based on only one version of the
training database with a specific SNR. The third row shows the improved results achieved when training the SNNR
network on five different SNR versions of the training database. Notice that the HCNNs were trained with noise-free
data. If the HCNNs are trained with noisc-reduced data then the recognition rate can be improved furthermorc.
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Training of the same network with different SNR (21, 15, 9, 3 and 0 dB) versions of the training database resulted
in a better noise reduction and thus a better recognition, see table 2, Method B. The network architecture for the
SNNR network in all experiments were (F,, Fg, Fe, Fp, Fg, Fg, Fg) = (24, 1, 1, 1, 1, 1, 24). F, = 24 indicate that
the input field has 24 inputs and Fy = 1 is the number of hidden PEs in the first hidden field. Two different training
strategies were applied for the HCNNs. The first is to train the HCNNs using sequences of noise-free homomorphic
vectors and the second is to train the HCNNs using sequences of noise reduced homomorphic vectors from the
SNNR network. The latter strategy is the most natural, because it is this kind of input the HCNNs will recieve on-
line. Table 2 presents some of our preliminary results.

S. RELATIONS TO OTHER METHODS

A comparison of the system in figure 1 and the speech recognition and noise reduction system in [1] is relevant due
to the fact that they both apply a connectionist approach to both the noise reduction and the speech recognition
problem. The following aspects indicate some of the improvements: The noise reduction network in figure 1 is self-
structuring and can provide a more optimal architecture, few hidden PEs are necessary, faster learning, dynamic
inputs i.e. delta cepstral coefficients and HCNN is a better speech recognizer. The results in table 2 were achieved
using only 5 hidden PEs in the noise reduction network. In our previous work [1] we applied 64 hidden PE! The
noise used in this work was selected randomly compared to the noise applied in [1].

6. CONCLUSION

We believe that the SNNR network is a very powerful method for noise reduction in general and that the
preliminary results presented above can be improved. Some of the possibilities for improvement we are investigating
at the moment are: Optimal weighting of the cepstral coefficients. A better training stop criteria for the SNNR
network. Larger SNNR network. More representative training database for the SNNR network. Comparison of the
performance of different speech recognizers in the system in figure 1. Training of the speech recognizer with noise
reduced data instead of noise-free data.
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domains: 1) pattern recognition, 2) sensory integration, and 3) distributed approaches
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Abstract
We designed and trained a modified time-delay neural network (TDNN) to perform
- both automatic lipreading (“speech reading”) and acoustic speech recognition in order to.
improve recognition both in silent environments as well as in the presence of acoustic
noise. The speech reader subsystem has a speaker-independent recognition accuracy of
51% (in the absence of acoustic information); the combined acoustic-visual system has a
recogntion accuracy of 91%, all on a ten-utterance speaker-independent task. Most import-
antly, with no free parameters, our system is far more robust to acoustic noise and verbal
distractors than is a system not incorporating visual information. Specifically, in the
presence of high amplitude pink noise the low recognition rate in an acoustic only system
(43%) is raised dramatically to 75% by the incorporation of visual information. OQur
system responds to (artificial) conflicting cross-modal patterns in a way closely analogous
to the McGurk effect in humans.

We thus demonstrate the power of neural techniques in several crucial and difficult
domains: 1) pattern recognition, 2) sensory integration, and 3) distributed approaches
toward “rule-based” (linguistic-phonological) processing. Our results suggest that speech
reading systems may find use in a vast array of real-world situations, for instance high
noise environments such as factory and shop floors, cockpits, large office environments,
outdoor public spaces, and so on.

Introduction

Automatic artificial speech recognition is notoriously hard, and no computer system
approaches the human ability to recognize spoken language amidst variations in speaker
(accents), gender, rate, degree of coarticulation — all in the presence of acoustic distractors
and noise [20]. Current automated systems are of lower accuracy and higher brittleness
than that necessary to fulfill the vast need in computer speech-to-text conversion, automatic
translation, speech control, etc. Representative approaches include hidden Markov models
(HMM), in which transition probabilities are encoded in links between nodes representing
phonemic segments, and blackboard methods, in which multiple special purpose
subsystems (phonological, lexical, grammtical, etc.) work synergistically to maximize a
recognition score . More recently, neural network techniques have been applied with some
success in limited domains [23]. Hybrid systems have tried to incorporate attractive
features from several component methods.

Any predictive source of information and constraints that could be incorporated into an
artificial system would be desirable, and traditionally most research has focussed on the
inclusion of grammatical, syntactic and other higher linguistic information. It is clear that
humans can employ information other than just the acoustic signal. In particular, humans,
especially the hearing impaired, can utilize visual information — speech reading — for
improved recognition accuracy (3,6-9,11-13,19,21,22]. Speech reading can provide direct
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information about speech segments and phonemes, as well as rate, speaker gender and
identity, and subtle information for segmenting speech from background noise. _

The “Cocktail party effect,” in which speech corrupted by crowd noise is drastically
more intelligible when the talker can be seen, provides strong evidence that humans use
visuval information in speech recognition [4]. Likewise, the “McGurk effect,” in which
artificially conflicting bi-modal stimuli are presented, reveals the influence of visual infor-
mation on the perception of speech [12]. Thus, for example, if a /bi/ (+front) is presented
visually and a /gi/ (+back) is presented acoustically, the listener will perceive a /di/ —
“averaging” these features to get +middle.

One theoretical analysis gives further impetus for the incorporation of visual
information in speech recognition. According to followers of the motor theory of speech
perception [14], sound is merely the medium,; it is the speech articulations that are the true
speech signal. Hence a more direct access to these articulations through vision would be
expected to improve perception.

Previous speech reading systems

Several speech reading systems have been developed recently. Petajan et al. [16,17]
used thresholded images of a talker’s face during the production of a word. They used a
dictionary of pre-stored labelled utterances and a standard minimum distance classifier for
visual recognition. Pentland and Mase [15] used an optical flow technique to estimate four
velocity values (upper and lower lips, and the corners of the mouth) from the raw pixel
video image of a mouth. They then performed a principal components analysis and stand-
ard mimimum distance classifier on three- and four-digit phrases. Yuhas et al. [24,25]
trained a neural network using static images of the mouth shape for vowel recognition.
Moreover, their system employed an omniscient controller (which adjusted the relative
weights of visual and auditory contributions) for best recognition in different amounts of
acoustic noise.

Our approach differs from these in several ways. Whereas Petajan et al. saved entire
video sequences of pixel maps for categorization — an extremely slow and memory
intensive procedure, even during recall — we recorded merely the positions of ten markers,
a drastic reduction in information. Our system is thereby much faster and speaker
independent as well. Whereas Pentland and Mase preprocessed the raw video image to
estimate visual velocities, we used special markers in order to focus on the higher level
speech issues. (Presumably a final practical system would employ preprocessing of the
raw video image.) We also had more input dimensions then they did, allowing subtler
distinctions to be made. Whereas Yuhas et al.’s treated static images of vowels, we treat
instead temporally changing data in full consonant-vowel or vowel-consonant phonemes.
Moreover, whereas Yuhas et al. employed an omniscient controller who adjusts the relative
weight of different evidence based on acoustic signal-to-noise ratio, our system is fully
autonomous, requiring no such controller. We are unique, too, in our use of the structured
TDNN backpropagation architecture.

Data acquisition and preprocessing

Our raw visual data consisted of the positions of ten reflective markers placed on the
talker’s face and sampled at 60 Hz by means of the two-dimensional motion tracker of
Motion Analysis Corporation. This data was preprocessed to yield five numbers at each
1/60 s interval, insensitive to tipping of the talker’s face in the frontal plane (Figure 1).
(We Fourier transformed several utterances and found that there was insignificant energy
above 15 Hz in the visual data, and thus our sampling rate of 60 Hz is more than
adequate.) Each of these five values were then normalized to have value 0.0 at the resting
position, and 1.0 at the maximum positive excursion, and resampled at 100 Hz (to be
compatible with the acoustic data).
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Figure 1: The positions of ten reflective markers
on each talker's face were recorded at 60 Hz, then
transformed into feature vectors having five
components, as shown. Feature 1 is the nose-chin
separation, which therefore represents the lowering
of the jaw. Feature 2 is the vertical separation of
two markers on the top and bottom lip, which
therefore represents mouth opening. Feature 3 is

Stork, Wolff and Levine

Acoustic data was taken simultan-
eously by a cardioid microphone and later
performed in software off-line. Acoustic
information was preprocessed through a
bank of fourteen mel-scale filters and
sampled every 10 ms [1]. All patterns
were one second in duration, synchron-
ized and segmented by hand in software,
off line.

We present here results on just ten
spoken letters by five talkers. The par-
ticular ten letters were chosen because
they illustrate crucial issues in speech
reading: b, d, f, m, n, p, s, t, v, z. For
instance, /bi/ and /di/ are acoustically very
similar, as are /em/ and /en/. Each of
these pairs illustrates, however, a sig-
nificant visual difference: /bi/ has closure
whereas /di/ does not; /em/ has closure
wherease /en/ does not. Converesely, /bi/
and /pi/ are visually identical, though are
easily disambiguated by differences in
voicing.

the average of the horizontal separations of the two
pairs of points (northeast and northwest, and the
southeast and southwest quadrants, as shown).
Feature 4 is, analogously for the vertical
separations of these points.

Network architecture and training ,

We explored several network architectures, all based on a modified time delay neural
network (TDNN) [23]. Figure 2 shows such a network (VO) for performing classifica-
tion based on five visual features only. In all networks, the input was 1000 ms in
duration, sampled at 10 ms intervals; this corresponds to array of input units 100 wide.
The VO network (for video only) has five feature values at each 10-ms interval. Each
(sigmoidal) hidden unit received signals from all five features at twenty intervals (200 ms),
as shown in black in Figure 2. We found that 200 ms was a typical time scale for visual
features. The array of hidden units was 81 wide (in order to “cover” all input units), and
four high (chosen for moderate data compression). The next layer consisted of x-units,
each having an exponential transfer function. Because the fan-in from the hidden units was
chosen to be ten (for broad input coverage), the x-unit array is 72 units wide. Itis 10 units
high, corresponding to the ten letter categories, as listed. In any interval, the relative
activities of the x-units encode the probabilities of the spoken letters at that interval. The
final layer consists of just ten p-units (probability units), which encode the relative
probabilities of the presence of the letters [10]. Each p-unit receives signals from the entire
width of the x-unit array, but from only the row corresponding to its letter category. In the
TDNN architecture, weights are “shared,” i.e., the pattern of input-to-hidden weights is
forced to be the same at each interval. Thus the total number of independent weights in this
VO network is 800. The parameters here and below were chosen somewhat heuristically,
and are not necessarily optimal.

The network utilizing only acoustic data, AQ, had the same structure as the VO
network shown in Figure 2, but differed in the parameters. The number of input features
for each 10-ms interval was fourteen, corresponding to fourteen mel-scale coefficients
(activations) from 0 Hz to 5 kHz. As with the VO network, the AO network had four
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hidden units at each interval. The fan-in from input to hidden unit layer was five units
(50 ms), a typical time scale for most important acousyic featqres (e.g., bursts, transitions,
etc.). The fan-in from hidden to x-unit was 25 units wide. This latter value was chosen in
order to insure that x-units in both the AO and VO networks ultimately received informa-
tion from the same number of input intervals — corresponding to 300 ms. There were
1280 independent weights in the AQ network. :

o)
1}‘ ™ (‘~~~~~~~~~~~~~~s~\~~. OO
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o () () eeee OO

g
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00
,sé’ ll 20 :
1 ]
[ 1000 ms L

Figure 2: Modified TDNN network for speech reading using visual input only (VO network).
The inputs are the five feature values (cf. Figure 1), sampled to give interpolated values at every 10
ms. The hidden units are standard sigmoidal transfer functions and have fan-ins from S x 20 input
units (200 ms of data, black). The x-units have exponential transfer functions and have fan-ins
from 10x4 hidden units (gray). Each of the final ouput units (p-units, or “probability units”) have
fan-ins from the entire duration of x-units, and hence represent the probability that a letter was
spoken at any time within the 1000 ms input window. In experiments incorporating acoustic
information, the network had somewhat different parameters (see text).

The AxV (audio times video) network received both acoustic and video input. This
network was built from the VO and the AO networks (just described) by taking their p-unit
outputs to form a new, final set of ten output units. The activity of a final output unit for a
category was:

p(CIA&V) = k p(CIA) p(CIV). (1]
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That is, the probability of occurence of a letter category C, given both acoustic and visual
evidence, is proportional to the product of the conditional probabilities based on the
acoustic and video evidence taken alone. (To insure that the final output probabilities sum
to 1.0, we included the normalization constant k.) This “independent opinion pooling” in a
Bayesian framework is strictly valid when the acoustic and video information 1s inde-
pendent at the level of individual utterances [2]}, as is achieved in our data. The product
given in Eq. 1 can be achieved in a network by sigma-pi neural units. The total number of
independent weights in the AxV network is 2080.

The fourth network we considered, the full AV network, had the same input-to-
hidden connections as the AQ and the VO networks, hence leading to an array of eight
hidden units at each interval (i.e., eight units “high”). Particularly important in our full
AV network was the fact that each x-unit could receive information from bot#h the acoustic
and the visual hidden units, by means of added connections. The total number of inde-
pendent weights in this network was 3280. (The most general network would permit
integration of video and acoustic information at the hidden layers too, but for technical and
training time reasons, we did not investigate such networks.)

Error was defined as:

E = -Infoutputc] [2]

where outputc 1s the activity in the output unit corresponding to the target category. This
error is zero when the target unit’s output is 1.0. Because of normalization of the output
activities, output;j and thus E depend upon the weights to all output units. Thus, even
though error is defined at a single output unit, all weights are updated in this scheme [10].

The training of the VO and AO networks was by means of backpropagation (learning
rate 1 = 0.001, momentum o =0.9) [18]. Training on four patterns/talker/letter for five
talkers typically required 250 epochs for minimum validation error (determined using one
test pattern/talker/letter). The AxV network required no further training, since the outputs
of the trained VO and AO networks were merely combined (multiplied) by means of
sigma-pi units with equal weights. The full AV network was constructed by merging the
trained AO and VO networks (learning parameters: n = 0.0002, momentum a = 0.9).
To this large net were added small weight cross-modal connections between the hidden
layer to the x-units. Then all weights in the full network were trained to minimum test
error.

Results

Figure 3 shows the average output probabilities given by our trained networks. Note
espeically the confusion of the /bi/ and /pi/ phonemes in the AO network. These phonemes
differ solely in the invisible distinction of voicing. Note too the acoustic similarity of the
/em/ and /en/ phonemes, as represented in the large cross terms; these phonemes differ
primarily in the acoustically subtle feature of nasality. These two letters are clearly dis-
tinguishable visually, as shown in the VO network. Thus in the AxV network /em/ and
/en/ are disambiguated far better than in the AO network. (A similar analysis holds for
other phonemes.)

Conversely, /di/ and /ti/ are confused in the VO network, but not the AO network.
This pair, too, is thus disambiguated better in the AxV than the VO network. (A similar
analysis holds for several pairs of phonemes, as the reader can verify.)

We would expect the performance on the full AV net to be better than the AxV net,
since the former can learn associations at an earlier level. The fact that we do not find this
result suggests that we have insufficient training data; spurious low-level correlations in
the training patterns might have been learned by the full AV net, but these correlations
were not in the test patterns.
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Figure 3: cConfusion matrixes for the video only (VO), acoustic only (A 0), AXV and the

full AV networks. Each vertical column is labelled by the spoken letter presented as input:
each horizontal row represents the output by the network. The radius of each disk in the array
is proportional to the output probability given an input letter. The accuracy of each network is
shown.

Cluster dendrograms

Our results can be presented in cluster dendrograms, which reveal structural simil-
arities among spoken letters better than does Figure 3. Because the confusion matrixes of
Figure 3 do not obey the postulates of a metric space (necessary for clustering algorithms),
we converted them. The “distance” between any two categories ¢j and cj, was determined
from the confusion matrix C(i,j) as follows:

D(cic) = CA.D) + CGj) - Chj) - CGi)- 3]

Equation 3 guaranteed, for instance, that D(c;,ci) = O for all categories. Although it
does not logically guarantee that D(c;,cj) 2 0 for all i and j, in fact we found that only one
pair of letters (/bi/ and /di/ in the AO network) did not obey this inequality. The distance
from cluster to a cluster was the minimum distance among all possible pairs of inter-cluster
points.

Summerfield [22] presented acoustic and visual cluster dendrograms for humans based
on psychophysical data. The important finding was that the two perceptual modes con-
veyed complementary information: phonemes that were similar acoustically were dissimilar
visually, and vice versa. There are several reasons for this, including the fact that the
voiced-unvoiced distinction is acoustically salient, but invisible; some clearly visible
distinctions (e.g. closure in /ey - /en/ distinction) are acoustically subtle.
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Figure 4: Cluster dendrograms of the then letter categories as determined by each of the
networks. Two letter categories are joined at a (vertical) value denoting their distance. The

overal scale (0 — 2) is given by Eq. 3, and kept the same for all four dendrograms, in order to
facilitate comparisons.

The first general trend to note in our dendrograms is that overall, letters are a bit more
confused visually (VO) than acoustically (AO), as is to be expected. There is yet greater
separability in the combined systems (AxV and full AV). The dendrograms also reveal
specific confusions: /bi/ and /pi/ are visually nearly identical, as are /di/ and /ti/ (VO).
Acoustically, /bi/ and /di/ are quite similar, and so forth. As with Summerfield’s dendro-
grams, we show the complementary nature of acoustica and visual information. We show
furthermore the improvement with bi-modal systems.

Robustness in noise

Our system is relatively insensitive to the addition of acoustic noise. Acoustic patterns
were normalized to maximum value 1.0. We simulated the addition of pink acoustic noise
by adding to each coefficient a random variable (standard deviation = 0.4). Under these
conditions, the AQ network had an accuracy of 43%, whereas the AxV network had an
accuracy of 74% — a dramatic improvement. Clearly the visual information led to a
significant improvement in recognition in noisy conditions. Note that this is consistent
with no extra free parameters, such as a modified ratio of acoustic to visual evidence.
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Acoustic input

Hidden unit representations
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The hidden unit representations — the patterns of connections .rom input to hidden
layer — are somwhat complex and hard to interpret. Figure 5, however, shows that some
“obvious” visual features are found in the VO network, such as mouth opening.

Video Feature Detector

e 5 + ............ LN B B B I O
2 34 wree ++00000000000
g |- + 2000000000000
> 1 .......... s s 80000000
0 5 10 15 20

Time step

MelScale Coef

Audio Feature Detector

Time step

Figure 5. A single hidden unit representation learned by the VO network (left) and by the
AQ network (right). The size of the ovals represents the strength of the excitatory connect-
ions from the visual features throughout the 200 ms input window; rectangles represent
inhibitory connections. The hidden unit in VO detects the opening of the mouth (cf. Features
2 and 3 in Figure 1). The acoustic hidden unit detects significant acoustic energy in the middle
range of frequencies, roughly in the location of a first formant.

Thus our structural backpropagation networks learn relevant features directly from the
data, even using very primitive feature detection.

Cross-modal confusion (McGurk effect)

As with human data, our system exhibits a McGurk effect [12]. In the McGurk effect,
the listener-watcher is presented with conflicting cross-modal evidence for phonemes. For
instance, if a /bi/ is presented visually (by means of a videotaped talker) while a /gi/ is
presented acoustically (by means of a tape recording synchronized with the videotape), the
listener-watcher will perceive a /di/, roughly “averaging” the two evidences for +front and
+back. To explore the McGurk effect in our AxV network, we presented artificial stimuli
consisting of all pairs of video letters and acoustic letters to the network. Figure 6 shows

tyrpical results.
Visual input
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Figure 6: Cross-madal perception matrix. The
vertical columns represent visual patterns; each
horizontal row represents a different acoustic
pattern for a single speaker. The table entry is the
final classification given by the AxV network.
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Note first that along the diagonal —
commensurate presentations — we get
typical good recognition results. For
conflicting simuli (off the diagonal), the
results are more interesting. For instance
the categorizations: /pi/ vis. & /di/ acous.
— /vi/ as well as /di/ vis. & /pi/ acous. —
/ti/ can be described as (rough) feature
averaging. (The reader can discern many
other examples in the Figure.) Some
patterns are particularly salient and dom-
inate categorization. For instance the
voiced alveopalatal fricative in the
acoustic /zi/ dominates all visual input,
and leads to the category /zi/ in all cases.
Likewise, the acoustic /em/ dominates all
visual patterns except /en/.
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Conclusions

Clearly the acoustic component of our networks is very primitive compared to
commercial and research speech recognition systems (especially in its choice of input
features). The fact that our visual network learns information that complements acoustic
information (cf. Figure 3) and improves recognition rate, gives us confidence that a further,
refined speech reading system can improve upon state-of-the-art acoustic recognizers,
especially in noisy environments.

Finally, the fact that our system mimicks some human psychophysical results —
acoustic and visual cluster dendrograms and the McGurk effect — suggests that our system
posses structural similarities to human neurobiology, and hence can be used as a research
tool for elucidating fundamental cross-modal neurobiological processes in vision and
language.
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