
THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

Robert H. Crabtree

A WILEY INTERSCIENCE PUBLICATION

JOHN WILEY & SONS

World Publishing Corporation

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

Robert H. Crabtree
Yale University
New Haven, Connecticut

A WILEY-INTERSCIENCE PUBLICATION 28-174-0 M821

JOHN WILEY & SONS

World Publishing Corporation

Authorized Reprint of the Original Edition,
Published by John Wiley & Sons, Inc. No part of
this book may be reproduced in any form without
the written permission of John Wiley & Sons, Inc.
This special Reprint Edition is Licensed for sale
in China excluding Taiwan Province of China, Hong Kong & Macao
Reprinted by World Publishing Corp. Beijing, 1990
ISBN 7-5062-0515-7 3 13 2006

Copyright © 1988 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc

Library of Congress Cataloging in Publication Data:

Craotree, Robert H., 1948-

The organometallic chemistry of the transition metals

- "A Wiley-Interscience publication." Includes bibliographies and index.
- 1. Transition metals. 2. Organometallic chemistry
- I. Title.

QD172.T6C73 1987 547'.056 87-21680

ISBN 0-471-85306-2

PREFACE

This book is intended for senior undergraduate and graduate courses in organometallic chemistry. It is based on a course given at Yale University for a number of years by the author. It should also prove useful to research workers in allied fields who want to become better acquainted with the subject.

The chapters are relatively self-contained and some (e.g., Chapter 10 or 16) may be omitted if desired. There are frequent cross-references and references to the literature, which should prove useful to graduate students and organometallic chemists in general. Problems and solutions are included.

I thank Rich Uriarte (General Electric) for encouraging me to write this book, my former student Charles Parnell (du Pont) for technical help, and my colleague Jack Faller for helpful suggestions. I also thank my teachers Malcolm Green and Joseph Chatt, who helped me think more deeply about the subject, and Hugh Felkin, who sensitized me to the organic implications of organometallic chemistry. I thank Ms. Lisa Crocker for helpful suggestions. Yale University gave me a semester leave to write this book; part of it was also written during the tenure of an Albright and Wilson Visiting Professorship at Warwick University and an Esso Visiting Lectureship at the University of Toronto.

ROBERT H. CRABTREE

LIST OF ABBREVIATIONS

[] Encloses complex molecules or ions

☐ Vacant site or labile ligand 1°.2°.... Primary, secondary....

A Associative substitution (Section 4.4)

acac Acetylacetone
a.o. Atomic orbital
bipy 2,2'-Bipyridyl

Bu Butyl cata Catalyst

CIDNP Chemically induced dynamic nuclear polarization

(Section 6.3)

C.N. Coordination number cod 1,5-Cyclooctadiene

coe Cyclooctene

cot Cyclooctatetraene

Cp,Cp* C₅H₅,C₅Me₅
Cy Cyclohexyl

∂ + Partial positive charge
 δ Chemical shift (NMR)

xiii

viv LIST OF ARREVIATIONS

٨ Crystal field splitting (Section 1.4)

ח Dissociative substitution mechanism (Section 4.3)

d_.d_ σ-Acceptor and π-donor metal orbitals (see

Section 1.4)

dpe Ph_oPCH_oCH_oPPh_o dmf Dimethylformamide dma Dimethyl alvoximate Me₂PCH₂CH₂PMe₃ dmoe dmso Dimethyl sulfoxide

Descriptor for hapticity (Section 2.1) η

E.E+ Generalized electrophile Enantiomeric excess e.e.

HaNCHaCHaNHa en Equivalent

Et **Ethyl**

ea

Fp (C₅H₅)(CO)₂Fe

fac Facial (stereochemistry) Tris(pyrazolyl)borate HBpz₃

Highest occupied molecular orbital homo

ì Nuclear spin or intermediate substitution mechanism IPR Isotopic perturbation of resonance (Section 10.8) Generalized ligand, in particular a 2e ligand (L model

for ligand binding is discussed on pp. 90-91)

L_nM Generalized metal fragment with n ligands lumo Lowest unoccupied molecular orbital Descriptor for bridging (Section 1.1) μ

Meta m-Me Methyl

mer Meridional (stereochemistry)

m, Reduced mass Molecular orbital m.o.

Frequency nbd Norbornadiene

NOE Nuclear Overhauser effect (Section 10.7)

Np Neopentyl

Nu,Nu-Generalized nucleophile o- Ortho
OAc Acetate

oct Octahedral (Table 2.5)
ofcot Octafluorocyclooctadiene
O.S. Oxidation state (Section 2.4)

p- Para Ph Phenyl py Pyridine

r.f. Radio frequency

SET Single electron transfer (Section 8.6)

solv Solvent

sq. py. Square pyramidal (Table 2.5)

T₁ Spin-lattice relaxation time

tbe t-BuCH=CH₂
thf Tetrahydrofuran
triphos MeC(CH₂PPh₂)₃

TBP or trig. bipy Trigonal bipyramidal (Table 2.5)

TMEDA Me, NCH, CH, NMe,

TMS Trimethylsilyl v.b. Valence bond

X Generalized 1e anionic ligand (Section 2.1) (X₂

model for ligand binding is discussed on

pp. 90-91)

CONTENTS

.is	ist of Abbreviations		
1	Introduction		1
	1.1	Werner Complexes	1
	1.2	•	5
	1.3	Soft versus Hard Ligands	7
	1.4	The Crystal Field	8
	1.5		11
	1.6	Back Bonding and Electroneutrality	13
		References	16
		Problems	16
2	General Properties of Organometallic Complexes		20
	2.1	The 18-Electron Rule	21
	2.2	Limitations of the 18-Electron Rule	. 27
	2.3	Electron Counting in Reactions	28
	2.4		30
	2.5	Coordination Number	32
	2.6	Effects of Complexation	34
		Reference	36
		Problems	36
			00

3	The M	letal-Carbon and Metal-Hydrogen Bonds	38
	3.1	The Stability of Transition Metal Alkyls	38
	3.2	The Preparation of Metal Alkyls	44
	3.3	Characterization and Properties of Metal Alkyls	47
	3.4	Metal Hydride Complexes	53
		References	60
		Problems	61
4	Ligan	d Substitution Reactions	62
	4.1	Metal Carbonyls	62
	4.2	Phosphines as Ligands	71
	4.3	Dissociative Substitution	74
	4.4	The Associative Mechanism	77
	4.5	The Interchange Mechanism	81
	4.6	Rearrangements of Coordinatively Unsaturated	
		Species	81
	4.7	Photochemical Substitution	83
	4.8	Solvents and Other Weakly Coordinating Ligands	85
		References	87
		Problems	88
5	Comp	plexes of Pi-Bound Ligands	89
	5.1	Alkene and Alkyne Complexes	89
	5.2	Allyl Complexes	95
	5.3	Diene Complexes	100
	5.4	Cyclopentadienyl Complexes	104
	5.5	Arene Complexes	112
	5.6	Other Ligands	114
	5.7	The Stability of Polyene and Polyenyl Complexes	115
		References	117
		Problems	119
6	Oxida	tive Addition and Reductive Elimination	121
	6.1	Three-Center Additions	124
	6.2	S _N 2 Reactions	127
	6.3	Radical Mechanisms	128
	6.4	Ionic Mechanisms	130
	6.5	Reductive Elimination	132

		CONTENTS	IX
	6.6	Oxidative Coupling and Reductive Extrusion	136
		References	138
		Problems	140
7	Insert	ion and Elimination	142
	7.1	Reactions Involving CO	143
	7.2	Insertions Involving Alkenes	148
	7.3	Other Insertions	153
	7.4	α-, β-, γ-, and δ-Eliminations	154
		References	159
		Problems	160
8	Nucle	ophilic and Electrophilic Addition and Abstraction	163
	8.1	Nucleophilic Addition to CO	166
	8.2	Nucleophilic Addition to Polyene and Polyenyl	
		Ligands	168
	8.3	Nucleophilic Abstraction in Alkyls and Acyls	176
	8.4	Electrophilic Addition to the Metal	177
	8.5	Electrophilic Abstraction of Alkyl Groups	177
	8.6	Single-Electron Transfer Pathways	180
		References	181
		Problems	183
9	Homo	ogeneous Catalysis	185
	9.1	Alkene Isomerization	188
	9.2	Alkene Hydrogenation	190
	9.3	Alkene Hydroformylation	200
	9.4	The Hydrocyanation of Butadiene	202
	9.5	Alkene Hydrosilation	206
		References	208
		Problems	209
10	Chara	acterization of Organometallic Compounds	212
	10.1	Isolation	212
	10.2	¹ H NMR Spectroscopy	213
	10.3	¹³ C NMR Spectroscopy	218
	10.4	³¹ P NMR Spectroscopy	219
	10.5	Dynamic NMR	220
	106	Coin Caturation Transfer	224

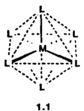
X CONTENTS

	10.7	T_1 and NOE	225
	10.8	Isotopic Perturbation of Resonance	231
	10.9	IR Spectroscopy	233
	10.10	Crystallography	236
	10.11	Other Methods	238
		References	240
		Problems	242
11	Carbenes, Metathesis, and Polymerization		244
	11.1	Metal Carbenes	248
	11.2	Metal Carbynes	259
	11.3	Bridging Carbenes and Carbynes	260
	11.4	Alkene Metathesis	264
	11.5	Alkene Polymerization and Oligomerization	267
		References	275
		Problems	277
12	The Activation of Small Molecules		280
	12.1	CO Activation	281
	12.2	CO ₂ Activation	286
	12.3	Alkane Activation	290
		References	299
		Problems	300
13	Clusters and the Metal-Metal Bond		303
	13.1	Structures	305
	13.2	The Isolobal Analogy	316
	13.3	Synthesis	320
	13.4	Reactions	323
		References	331
		Problems	333
14	Applications to Organic Synthesis		335
	14.1	Metal Alkyls	335
	14.2		344
	14.3		345
	14.4		348
	14.5	Coupling Reactions	350
	14.6	Insertion Reactions	353
	14.7	Nucleophilic Attack on a Ligand	355

			CONTENTS	xi
	14.8	Directed and Asymmétric Catalysis		363
		References		366
		Problems		368
15	Oxida	xidation and High-Oxidation-State Complexes 3		371
	15.1	Polyalkyls		372
	15.2	Polyhydrides		377
	15.3	Cyclopentadienyl Complexes		379
		References		382
		Problems		383
16	Bioor	ganometallic Chemistry		384
	16.1	Introduction		384
	16.2	Coenzyme B ₁₂		388
	16.3	Nitrogen Fixation		394
	16.4	Hydrogenases and Methanogens		400
		References		404
		Problems		406
Sol	utions	to Problems	-	407
Ind	ex			417

INTRODUCTION

Transition metal organometallic chemistry is an important part of the modern renaissance of inorganic chemistry that began in the 1950s and 1960s. It has always had strong links with organic chemistry and is beginning to make them with biochemistry. It is a young and vigorous field: much of the work described in this book has been carried out in the last 15 years.


Transition metal ions are Lewis acids. This means that they can bind the lone pairs of *ligands* L, which are simply Lewis bases, to give a coordination compound, or *complex* ML_n , as in the familiar aqua ions $[M(OH_2)_6]^{2+}(M = V, Cr, Mn, Fe, Co, or Ni)$.

Organometallic complexes contain an M—C bond. Such species tend to be more covalent, and the metal is often more reduced, than in classical coordination compounds such as the aqua ions. Ligands which usually bind to metals in their lower oxidation states are CO, alkenes, and arenes, for example, $Mo(CO)_6$, $(C_6H_6)Cr(CO)_3$, or $Pt(C_2H_4)_3$.

In the first few sections of this chapter we will review some fundamental ideas of coordination chemistry, which also apply to organometallic complexes.

1.1 Werner Complexes

The geometry most commonly adopted for coordination compounds¹ (or Werner complexes) is the octahedron (1.1), one of the Pythagorean regular

solids. The ligands occupy the six vertices of the octahedron, which allows them to minimize their M—L bonding distances, while maximizing their L···L nonbonding distances. From the point of view of the coordination chemist, it is perhaps unfortunate that Pythagoras decided to name his solids after the number of faces (octa = eight) rather than the number of vertices.

The assembly of metal and ligands that we call a complex may have a net charge, in which case we call it a complex ion (e.g., $[PtCl_4]^{2-}$). Together with the counter ions, we have a complex salt (e.g., $K_2[PtCl_4]$). In some cases both the cation and the anion may be complex, as in the picturesquely named Magnus's Green Salt $[Pt(NH_3)_4][PtCl_4]$. Square brackets are used where necessary to enclose the individual complex molecules or ions.

Ligands that have a donor atom with more than one lone pair can donate one to each of two or more metal ions. This gives rise to polynuclear complexes, such as 1.2 ($L = PR_3$). The bridging group is represented in formulas by using the Greek letter μ (pronounced "mu") as in $[Ru_2(\mu-Cl)_3(PR_3)_6]^+$. Note that 1.2 can be considered as two octahedral fragments sharing the face that contains the three chloride bridges.

Other ligands can have more than one donor atom, each with its lone pair; an example is ethylenediamine (NH₂CH₂CH₂NH₂, often abbreviated as en). Such ligands most commonly donate both lone pairs to the same metal to give a ring compound, known as a *chelate*, from the Greek word for claw. Structure 1.3 is a typical example of such a complex.

The early Russian investigator Chugaev first noted that chelating ligands are much less easily displaced from a complex than are monodentate ligands of the same type. The main reason is illustrated in Eq. (1.1).

$$[M(NH_3)_6]^{n+} + 3en \longrightarrow [M(en)_3]^{n+} + 6NH_3$$
 (1.1)

The number of particles increases from 4 to 7 on making the chelate complex. This creates entropy, and so favors the chelate form. Each chelate ring leads to an additional factor of about 10⁵ in the equilibrium constant for reactions like Eq. (1.1). Equilibrium constants for complex formation are usually called formation constants; the higher the value the more stable the complex.

Not only does chelation make the complex more stable, but it also has stereochemical consequences. Polydentate chelating ligands with three or more donor atoms also exist. Macrocyclic ligands such as 1.4 and 1.5, confer an additional increment in the formation constant (the macrocyclic effect); they tend to be given rather lugubrious trivial names, such as "cryptates" (1.4) and "sepulchrates" (1.5).

Alfred Werner developed the modern picture of coordination complexes in the 20 years that followed 1896 when, as a young scientist, he proposed that in the well-known cobalt ammines (ammonia complexes) the metal ion is surrounded by six ligands in an octahedral array, as in 1.6 and 1.7.

In doing so, he was opposing the views of all the major figures in the field, who held that the ligands were bound to one another in chains, and that only the ends of the chains were bound to the metal, as in 1.8 and 1.9.

$$C_0 \leftarrow C_1$$
 $N_{H_2} - N_{H_2} - N_$

Jørgensen, who led the traditionalists against the Werner insurgency, was not willing to accept that a trivalent metal, Co³⁺, could form bonds to six groups; in the chain theory, there were never more than three bonds to Co. Each time Werner came up with what he believed to be proof for his theory, Jørgensen would find a way of interpreting the chain theory to fit the new facts. For example, coordination theory predicts that there should be two isomers of [Co(NH₃),Cl₃]+ (1.6 and 1.7); the chain theory predicts that there should be only one isomer. Up to that time, only a green isomer had ever been found. We now call this the trans isomer (1.6), because the two Cl ligands occupy opposite vertices of the octahedron. Using Werner's theory, there should also have been a second isomer, 1.7 (now called cis), in which the Cl ligands occupy adjacent vertices. On the other hand, Werner was able to obtain both green and purple isomers of the nitrite complex [Co(NH₃)₄(NO₂)₂]⁺. Jørgensen quite reasonably (but wrongly) countered this argument by saying that these were not cis and trans isomers but that the nitrite ligands in the two isomers were simply bound in a different way. via N in one case (Co-NO₂) and O (Co-ONO) in the other. Werner then showed that there were two isomers of [Co(en)₂Cl₂]⁺, one green and one purple. Jørgensen brushed this aside by invoking the two chain isomers 1.8 and 1.9.

In 1907 Werner finally succeeded in making the elusive purple cis isomer of [Co(NH₃)₄Cl₂]⁺ (1.7) by a clever route (Eq. 1.2) involving the corresponding carbonate [Co(NH₃)₄(O₂CO)], in which two oxygens of the chelating diamion are both bound to the metal and are therefore necessarily cis.

$$H_3N_{11} = 0$$
 $H_3N_{11} = 0$
 $H_3N_{12} = 0$
 $H_3N_{13} =$

Treatment with HCl at 0° C liberates CO₂ and gives the cis dichloride. Jørgensen, receiving a sample of this purple cis complex by mail, conceded defeat. Later, Werner resolved optical isomers of some of his compounds of the general type $[Co(en)_2XY]^{n+}$ (1.10 and 1.11). Only an octahedral ligand array can account for the optical isomerism of these complexes.

Even this point was challenged on the grounds that only organic compounds can be optically active, hence the optical activity must reside in the organic ligands. Werner responded by resolving a complex, 1.12, containing only inorganic elements. This species has the extraordinarily high specific rotation of 36,000°, and required 1000 recrystallizations to resolve. Werner won the Nobel Prize in chemistry for this work in 1915.

1.2 The Trans Effect

In the 1920s Chernaev discovered that certain ligands facilitate the replacement or substitution of a second ligand trans to the first by an external ligand. Ligands that are more effective at this labilization are said to have a higher trans effect. We discuss in detail how this happens in Section 4.4, for the moment we need only note that the effect is most marked in substitution on Pt(II), and that the highest trans effect ligands either form unusually strong σ -bonds, such as H^- , Me^- , or $SnCl_3^-$, or unusually strong