

/ 1985
Symposium on
-\ Logic Programming

Sheraton Boston Hotel
Boston, Massachusetts

PGNC ([X|L1] sz ;ﬁ:,;ﬁ%
O

Sponsored by:
@EEE Computer Soclety

Technical Committee on
Computer Languages

THE INSTITUTE, OF ELECTRICAL AND
ELECTRONICS ENGINEERS. INC .

|

The papers appearing in this book comprise the proceedings of the meeting mentioneq on the cover
and title page. They reflect the authors’ opinions and are published as presented and without chapge,

in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer. Society Press, or the Institute of Electrical and Electronics
Engineers, Inc. : .

Published by IEEE Computer Society Press
1730 Massachusetts Avenue, N.W.
Washington, D.C. 20036-1903

Copyright and Reprint Permissions: Abstracting is permitted with credit fo the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid thraugh the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing Serv-
ices, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copyright © 1985 by The Institute
~ of Electrical and Electronics Engineers, Inc. : : . -

ISBN 0-8186-0636-3 (Paper)
ISBN 0-8186-4636-5 (Microfiche)
_ ISBNA__0-81,‘,§§;3636-7 (Casebound)
IEEE,Géf'e'\Jog- unber 85CH2205-3
IEEE Gémputer Societ Order Number 636

Order from: IEEE Computer Society IEEE Service Center
: ' Post Office Box 80452 445 Hoes Lane
Worldway Postal Center Piscataway, NJ 08854

Los Angeles, CA 90080

QTHE INSTITUTE OF ELEGTRICAL AND ELECTRONICS ENGINEERS, INC.
T mes '

.
1]

- —

Preface

This second symposium on logic programming demonstrates the continued interest by researchers in
the United States as well as by researchers abroad in this new area of computer science. About 80
papers were submitted to the 1985 Symposium on Logic Programming. From these papers, we selected
less than one-third. For the selection we had the invaluable help of the referees, whose names are listed
on page vii. In addition, at least one member of our technical committee refereed each of the submitted
papers. This screening process reassured us that only the highest quality papers would be accepted.
The breadth of scope of the papers is impressive. Topics covered include theory, semantics, exten-
sions, parallelism, language issues, implementation, and software engineering.

We undoubtedly benefited from the experience gained in organizing the first symposium, held in
Atlantic City in 1984. Nevertheless, itis always a considerable task to manage a conference of this size.
This effort was made easier by the outstanding and friendly cooperation among the members of the
technical committee and the existence of the CSNET. Furthermore, we believe in the advantages of
logic programming: a data base written in Prolog by John Conery enabled us to do an efficient and fair
matching of papers to referees and also helped us considerably in the selection process.

Finally, it should be pointed out that a substantial percentage of the accepted papers were authored by
researchers from abroad. This gives our symposium a truly international flair. We*hope that this trend
will continue in future symposia.

Jacques Cohen

John Conery

Program Cochairmen

1985 Symposium on Logic Programming

iii

Conference Committee

General Chairman

Doug DeGroot
IBM T.J. Watson Research Center

Program Cochairmen

Jacques Cohen
Computer Science Department
Brandeis University

John Conery
Department of Computer and Information Science
University of Oregon

Technical Program Committee

Jacques Cohen (Brandeis)
John Conery (Oregon)
Doug DeGroot (IBM Yorktown)
Seif Haridi (IBM Yorktown)
Bob Keller (Utah)

Gary Lindstrom (Utah)
Jack Minker (Maryland)
Fernando Pereira (SRI)
Alan Robinson (Syracuse)
Sten-Ake Tarnlund (IBM Yorktown)
David S. Warren (Stony Brook)
Jim Weiner (New Hampshire)

Commercial Exhibits Chairman
Yuriy Tarnawski (IBM Stamford)

Harvey Abramson
Daniel Bobrow
Peter Borgwardt

Ken Bowen
Robert A. Boyer-
Ron Brachman

Maurice Bruynoaghe
Mats Carlsson
Takashi Chikayama
Jacques Cohen
Shimon Cohen
John Conery
Philip T. Cox
Veronica Dahl
Doug DeGroot
Al Despain
Sally Douglas
Michael Dyer
Stephen Fickas
Herve Gallaire

Jean Gallier
Susan Gerhart
Joseph Goguen
Ralph Griswold

Seif Haridi
Lisa Hellerstein -

Referee List

<

Tim Hickey

Bharadwaj Jayaraman

Ken Kahn
James Kajiya
Tadashi Kanamori
Simon Kasif

Robert Keller .
Dennis Kibler
Jan Komorowski
William Kornfeld
Robert Kowalski
Tony Kusalik
Guy Lapalme
" Rosanna Lee
Wm Leler
Hector Levesque
- Georgio Levi
Gary Lindstrom
David Maier
Umberto Martelli
Jack Minker

- Naftaly Minsky
Prateek Mishra
.Dan Moldovan
Lee Naish
Sanjai Narain.

vii

Mike Newton
Kamran Parsaye
R. Pattel
Fernando Péreira
Barak Perimutter
Uday Reddy
Naphtali Rishe
Hajime Sawamura
Andreas Schuelke
Ehud Shapiro
Aditya Srivastava
Amitabh Srivastava
Mark Stickel
Stan Szpakowicz
Chun Tam
Sten-Ake Tarnlund
Evan Tick
Peter van Emde Boas
H. van Emde Boas-Lubsen
Maarten van Emden
Mitchell Wand
David H. D. Warren
David S. Warren.

Jim Weiner
Walter Wilson
Michael Wise

Table of Contents

Preface. e
Conference Committeettt ettt

Referee List.ot et

Keynote Address

Directions for Logic Programming e

R. Kowalski

Parallelism
Chairman: John Conery, University of Oregon
Semi-Intelligent Backtracking of Prolog Based on Static

‘Data Dependency Analysis........... et e e e

J.-H. Chang and A.M. Despain

User Defined Parallel Control StrategiesinNial.

J.1. Glasgow, M.A. Jenkins, and C.D. McCrosky
AND-Parallelism with Intelligent Backtracking for Annotated

LogicPrograms.t e e e

P. Dembinski and J. Maluszynski

Extensions
Chairman: Randy Goebel, University of Waterloo

An Experiment in Programming with Full First-Order Logic

Z.D. Umrigar and V. Pitchumani -

A Meta-Level Extension of Prolog

K.A. Bowen and T. Weinberg

Logic Programming cum Applicative Programming e,

N. Dershowitz and D.A. Plaisted

Language Issues ,
Chairman: Kenneth A. Bowen, Syracuse University

On the Treatment of Cuts in Prolog Source-Level Tools

R.A. O’Keefe

All Solutions Predicates in Prologc.oiiiiiiiin i

. L. Naish

Unification-Free Execution of Logic Programs

J. Maluszynski and H.J). Komorowski

Invited Paper ' :

Logic Programming: Further Developments.

H. Gallaire

Panel Discussion: Standardizing Prolog
Chairman: F. Pereira, SRI

Concurrent Prolog
Chairman: Ehud Shapiro, Weizmann Institute

Concurrent Prolog in a Multiprocess Environment

R.K.S. Lee and R. Goebel

ix

.............

............

............

10V

A Sequential Implementation of Concurrent Prolog Based on X

the Shallow BindingScheme e 110 .
T. Miyazaki, A. Takeuchi, and T. Chikayama :

Concurrent Prolog Compileron TopofProlog.o ... 119
K. Ueda and T. Chikayama

Semantics
Chairman: Jan Komorowski, Harvard University

The Declarative Semantics of Logical Read-Only Varlables 128"
G. Levi and C. Palamidessi
Narrowing as the Operational Semantics of Functional

Languagest e 138"
U.S. Reddy ’ .o

Towards an Algebra for Constructlng Logic Programs..................... e 152 ?
R.A. O’Keefe

Implementation Issues ‘
Chairman: William Kornfield, Quintus Computer Systems, Inc.

A Microcoded Unifier for Lisp Machine Prolog.................... e 162
M. Carlsson)

SLOG: A Logic Programming Language Interpreter Based on Clausal

Superposition and Rewriting. e e 172
L. Fribourg ' .

Towards a Real-Time Garbage Collectorfor Prolog. 185y
E. Pittomvils, M. Bruynooghe, and Y.D. Willems) -

Theory

Chairman: Maarten H. Van Emden University of Waterloo
Recursive Unsolvablhty of Determinacy, Solvable Cases

of Determinacy and Their Applications to Prolog Optimization. 200
H. Sawamura and T. Takeshima -)

Logic Programming and Graph Rewriting i, 208
J.H. Gallier and S. Raatz . ‘

Surface Deduction: A Uniform Mechanism for Logic Programming 220
P.T. Cox and T. Pietrzykowski :

Special Topics

Chairman: Susan Gerhart, Wang Institute of Graduate Studies)

Towards a Programming Environment for Large Prolog Programs e .. 230
J. Chomicki and N.H. Minsky _

Modular Logic Programming of Compilers T 242
H. Ganzinger and M. Hanus _

An(other) Integration of Logic and Functional Programming. e 254
A. Srivastava, D. Oxley, and A. Srivastava : -

A Technique for Doing Lazy Evaluationinlogic...................... e 261
S. Narain .

Authorindex................................. e, e 270

Keynote Address

Robert Kowalski
Imperial College, University of London
London, England

DIRECTIONS FOR LOGIC PROGRAMMING

Robert Kowalski

Department of Computing,
Imperial College. University of London

To evaluate possible future directions for
logic programming, we need first to determine what
logic programming is, and we need to determine its
relationship both with PROLOG and with logic,

As a first (and most conservative)
approximation we can identify logic programming
with the observation that

procedures = Horn clauses + backward reasoning
el sewhere expressed more generally as
algorithm = logie + control [1,2].

Like a relation in a relational database or in an
ideal logic program, this relationship can be used
in different ways. Two uses are of special
significance:

1. It can be used to support declarative
programming, Given sentences formulated by a
user in Horn clause logic, the application of
backward reasoming by the computer gives rise to
procedures, which render such sentences
executable, ’

2. It can also be used to support procedural
programming. Given procedures formulated by a
programmer in problem-reduction terms, the
removal of backward reasoning, gives rise to
sentences of logic. 1In this way, the syntax of
logic serves as an instrument to control the
behaviour of the machine.

The declarative use is associated with such
applications of logic as program specification and
database query, where knowledge and problems are
formulated without concern for the problem-solving
process. The computer uses backward redsoning to
convert such knowledge into procedures, But the
form of reasoning used by the computer is generally
of no interest to the user. whose main concern is
that the computer uses its knowledge correctly and
efficiently to solve the problems it is posed.

The procedural use is associated with
programmer-controlled problem-solving. The
programmer conceives of procedures and then uses
the conclusion-conditions form of Horn clause logic
to capture the problem-subproblems structure of
those procedures. The "logical form"™ is more
abstract than the procedures from which they are
obtained,

CH2205-3/85/0000/0002$01.00 © 1985 IEEE.

Although both uses of logic programming are
necessary, the declarative use is primary. Even
when the procedural use is required for the sake of
efficiency, the declarative use is necessary to
establish the criteria of correctness for the
procedures.

Although the two modes of use are conceptually
quite distinct, they need to interact. Good
software engineering principles dictate that
declarative systems analysis and problem
specification precede procedural implementation,
(Extensions of) Horn clause logic can be used for
both the declarative and the procedural stages of
software development. Moreover, procedures
expressed in logical form can also be read
declaratively. This gives the programmer a "double
check®™ on his intuitions. It also facilitates the
verification of procedures by showing that the
logical form of the procedures is a consequence of
the program specification [3,4%,5,6,7,8,9,10].

Relationshir with functional programming

Horn clause programming shares many
characteristics with functional programming, Both
can be regarded as special cases of logic
programming understood in the broad sense of

using logic to represent programs and
using deductich to perform computations.

Horn clause programming uses a restricted subset of
predicate logic, whereas functional programming
uses an equational form of logic, in which programs
are represented by sets of equations and computa-
tion is performed by reasoning with equations used
as rewrite rules. Both Horn clause programming and
functional programming share the possibility of
declarative and procedural modes of use., The gap
between the two modes however, is greater for Horn
clause programming, This is both a potential
strength, as well as a source of potential
weakness, It is a strength because Horn clauses are
more expressive than functional programs and
therefore have greater potential for declarative
programming, It is a source of weakness because
users have more trouble making the transition from
declarative to procedural use. (We shall return to
this below.)

Certain research areas in functional
programming have been explored more thoroughly than

their analogues in Horn clause programming. Chief
among these are higher-order functions, data types
and parallel computer architectures. The attempt
to synthesize systems which combine funectional
programming and Horn clause programming is probably
the most active area of research in logic
programming today. This work certainly needs to be
furthered, but there 1is a danger that it may
distract attention from the need to improve and
extend Horn clause programming in other ways,

Many of these other improvements are suggested
by a comparison of Horn clause logic with more
powerful forms of logic in general. Others (to do
with destructive assignment in particular) are
suggested by a comparison with conventional
procedural programming languages. To a certain
extent, both types of improvement are also
suggested by a comparison with relational data-
bases.

In the remainder of this paper I shall use the
term "logic programming® rather loosely to refer to
extensions of Horn clause programming which stay
within the broader notion of logic programming
discussed above.

Relationship with relational databases

Logic programming (in this loose sense) can be
regarded as combining characteristics of functional
programming and relational databases. It shares
with relational databases, the use of relations to
represent information and the use of deduction to
derive conclusions from assumptions.

Data in relational databases is defined by
simple Horn clauses without conditions. However,
queries can be expressed in full, unrestricted
first-order logic, Thus data is more restricted
than Horn clause programs, but queries are more
powerful .,

The more powerful form of queries in
relational databases can be extended to logic
programming by extending Horn clauses with negation
as failure [11). To the extent that negation as
failure approximates full negation, this allows
full unrestricted logic in the conditions of rules
in general [12].

The extension of the simple Horn clause model
of logic programming to include negation as failure
applies to both the declarative and procedural
modes of use, For example the rule

x is ordered if for all i and j
(ugvif xy 1s u and x4 is v)

which can be re-expressed in terms of negation as
failure

x 18 ordered 1if for all {4 and 3
not[x; is u and xy is v and not u £ v]

has an obvious declarative reading. But it can

also be used to represent the procedure which shows

X is ordered by searching through all pairs of

positions i and j, succeeding if it cannot find any
pair whose contents are out of order.

This extension of Horn clause logic as well as
other features of database query languages, such as
set abstraction, are essential features of logic
programming today. Approximations to these
features can and have been implemented in PROLOG
(13,14].

Relational database query languages are purely
declarative - the user specifies the form of the
data to be found without identifying the method of
access, Efficient access is the responsibility of
query evaluators and optimizers.

The development of more efffcient and more
intelligent, system-controlled problem-solving
strategies, extending those which have been
developed for relational database systems, 1s an
important area of research, This area has been
neglected by comparison with the work relating
Horn clause programming and functional programming.

Perhaps the most important problem-solving
improvement which is needed is better subproblem
selection. PROLOG's strategy of solving
subproblems in the order in which they are written
is appropriate for procedural uses of logic
programming, but it is inadequate to support
declarative modes of use. Other improvements which
have already been investigated include selective
backtracking and loop detection., These strategies
may be essential for declarative uses which extend
relational databases. However, they may also be
too sophisticated for most programmers to control.

Logic programming shares with functional
programming and relational databases the lack of a
destructive assignment statement. However,
destructive assignment is a feature of both
conventional programming languages and database
updates. Whether the efficiencies possible with
programmer-controlled use of destructive assignment
can equally be obtained by sophisticated
implementations of assignment-free programs is
perhaps the single. most important problem of logic
programming, We shall return to the destructive
assignment problem later,

PROLOG. For many people, logic programming
has become synonymous with PROLOG. However, PROLOG
is a concrete language with a specific problem-
solving strategy and a number of extralogical
features. Logic programming is uncommitted with .
respect to many aspects of problem-solving strategy
and is not comfortable with the use of extralogical
features,

PROLOG's problem-solving strategy is well-
known: subproblems are tackled in the order in
which they are written; and clauses are tried in
the order in which they occur, PROLOG's most
important extralogical primitives are

(a) "/" which controls backtracking,

(b) "add” and "delete™ which dynamically add and
delete clauses, and-

(c) “evaluable predicates® for input-output.

PROLOG contains a "pure PROLOG"™ sublanguage
consisting of Horn clauses without extralogical
features., Consequently pure PROLOG admits both
declarative and procedural modes of use. However,
for the most part, its depth~first, sequential
problem-solving strategy makes it better suited for
procedural programming than for declarative
knowledge representation and problem-solving.
Moreover there is a discontinuity between learning
to use PROLOG declaratively and learning to use it
procedurally.

As a declarative language, pure PROLOG is
simpler than most procedural languages because the
user can ignore issues of program execution and can
concentrate instead on the problem definition.
However, as a procedural language, it is both
simpler and more complicated than conventional
programming languages, On the one hand, because it
(pure PROLOG) lacks the assignment statement and
other side effects, interaction between clauses is
more transparent and therefore incremental
development of programs is easier. On the other
hand, because execution involves unification and
backtracking, it is more complicated for the user
to understand and more difficult to control.

. Because of PROLOG's simple, relatively
unsophisticated problem-solving strategy,
declarative use can easily give rise to loops and
fail to give an answer. To avoid the loop, the
user has to abandon the declarative mode of use and
learn to use PROLOG procedurally. This creates a
discontinuity in the learning process. Many users

never graduate from declarative to procedural -

modes of use,

The same discontinuity exists to a lesser
extent with functional programming languages such
as pure LISP. Because functional programs are
determinate, order of equations doesn't matter,
whereas order of clauses in PROLOG is critical; and
because functions are not executed "backwards",
order of evaluation of subterms is less important
than order of subgoals in PROLOG.

The discontinuity problem
acute with logic programming systems which employ
more sophisticated problem-solving strategies.
Programming languages such as IC-PROLOG
{14,15,16,1, PARLOG [17,18,28], Concurrent PROLOG
[19,20,21,] and GHC [29]. for example, seem to
anticipate and address this problem by expecting
its users to be sophisticated programmers. The
problem will become even more sevére with the
advent of highly parallel non-von Neumann implemen-
tations of logic programming.

Extralogical features of PROLOG

In addition to the discontinuity problen,
which arises when using PROLOG as a pure logic
programming language, there are problems which
arise with the use of extralogical features. The
use of extralogical features can be classified into
three categories:

1) uses which are inherited from previous exposure

will become more

to conventional procedural languages or which in
some other way fail to exploit what is possible
with pure (declarative and/or procedural) logic
programming style;

2) uses which extend the logic of Horn clause
programming, either by extending expressive
power or by extending problem-solving
strategies; .

~ 3) uses which do not seem to fall into either of

the first two categories. This applies
especially to the addition and deletion of
clauses to obtain the effect of destructive
assignment.)

The ideal is to do away with extralogical
features completely (or at least to isolate and
identify those which cannot be eliminated). Those
uses, in category 2. whose purpose is to implement
extensions of Horn clause programming should be
replaced by providing such extensions as primitives
in an improved PROLOG environment [22]. This has
already happened with the provision of primitives
for negation as failure and set abstraction.
However, the form of negation as failure which is
generally provided is still incorrect [23]. 1Its
correction should be considered a priority.

Replacing extralogical features by extensions
of Horn clause programming would also help to
eliminate those uses, in category 1, which are the
result of poor programming style,

The problem is with uses of extralogical
features in category 3, which cannot readily be
replaced by clearly identifiable extensions of Horn
clause programming. In some cases the problem is
that there seems to be more than one candidate
extension which solves the problem. The elimina-
tion of extralogical primitives for input-output is
an example. One possibility is to incorporate all
input into input streams and all output into output
streams., The input can be réad when needed and the
output can be written when available, Such
behaviour can be obtained by producer-consumer
execution [15,16,28].

Another possibility is to arrange all input to
take the form of answers supplied by the user to
queries posed by the system. The system poses such
queries when it tries to tackle subproblems which
it does not have the knowledge to solve [24].
Other than the output which is implicit in the
systenm's questions to the user, all output takes
the form of bindings to variables in the top-level
goal.

The first solution requires the programmer to
control input-output explicitly using sophisticated
consumer-producer execution The second solution
is better suited to declarative uses of logic
programming. Moreover, in theory at least, it
allows input to be supplied by several users in
parallel. The problem is how to reconcile these
two solutions.

Destructive assigoment

Most discussion of PROLOG's extralogical
features concentrat: on the use of cut "/" ., Some
of these uses ca: be replaced by negation as
failure, Others ca. be avoided by ccnditionals or
case expressions, r0LOG'S primitives for adding
and deleting clauses a~e more troublesome,

However, many instar.~es of adding and deleting
clauses are logically irnocuous. Addition of
clauses, for example, is often used simply to
improve efficiency by add ng lemmas to store
intermediate results for late: reuse. The logical
character of such addition: can be made more
apparent by providing lemma generation as an
expliecit facility,

Similarly, deletion of clauses can be used in
.a logically justifiable manner to reclaim storage
occupied by clauses which are no longer accessible
to the rest of the program. The logical character
of such deletions would be more secure if they were
replaced by garbage collections automatially
performed by the system.

It is the combined use of addition and
deletion to transform objects without changing
their names, as in the destructive assignment
operation of conventional programming languages,
which is logically most troublesome.,

Novice PROLOG programmers often use deletion
of clauses to simulate destructive assignment, even
when this is unnecessary. Often the same effect
can be obtained more efficiently by writing
assignment-free tail-recursive procedures which
call themselves with new values as parameters. The
- following program which defines multiplication as
repeated addition illustrates the point:

Times(x y z) if TimesAux (x y x z)
TimesAux(x 1 z z)
TimesAux(x y z' z) if Plus(y' 1 y)

and Plus(x z' z")

and TimesAux(x y' z" z)

Here, exploiting the use of destructive assignment
in the implementation of tail recursion, successive
calls to TimeAux

destructively decrement the second parameter
by 1, and destructively add x to the third
parameter, until the second parameter equals
1, in which case the result is the value held
in the third parameter,

It might be preferable if similar efficiency
could be obtained by more intelligent execution of
the "obvious" recursive definition:

Times(x 1 x)

Times(x y z) if Plus(y' 1 y)
and Times(x y' z!')
and Plus(x z' 2z)

In fact this might be possible with some
appropriately goal-oriented form of forward
reasoning.

P. ocedural interpretations of forward
reaso. .ng seem to be worth exploring more
general ly for several reasons, Many rule-based
expert systems languages, for example, work by
forward reasoning. Moreover, the implementation of
forwar¢ reasoning in the connection graph proof
procedue [25,26,] provides further opportunities
for deletion of clauses and therefore for system-
introduced destructive assignment.

The problem of destructive assignment becomes
more acute with the manipulation of more elaborate
data structures, This has been studied extensively
for recursive data structures, In this case, the
effect of destructive assignment can often be
obtained by some form of incremental garbage
collection. Thus, for example. it is possible to
devise implementation schemes which use destructive
assignment to construct the list x by overwriting A
in the call

Append(A B x) ?
if there are no other references to A elsewhere,

The use of conventional destructive assignment
to overwrite A in the example above not only
conserves space, but it also conserves names by
reusing A to name the result of appending B to A.
This is logically dangerous. The same name is used
to refer to two quite different lists,

The problem of destructive assignment becomes
most severe when we consider the use of databases
as data structures. In such cases, straight-
forward use of logic without destructive assignment
gives rise to the frame problem [25].

Databases as data structures. Many uses of
addition and deletion of clauses in PROLOG can be
interpreted as manipulating databases as data
structures., PROLOG programs which use addition and
deletion to update databases are a special case.,

Databases defined by sets of clauses can
perform many of the functions of conventional data
structures such as arrays. An array A, for
example, which contains the first 100 even positive
integers:

Aj =21 for 1< 1 <100

can be defined either by clauses which enumerate
its elements:

Item(A 1 2)
Item(A 2 4)

Item(A 100 200)
or by a general rule which computes them:
Item(A 1 x) if 1< 1

and 1 £ 100

and Times(2 1 x).

It is also useful to have a predicate which

determines the length of arrays. This -~.an be
defined by an assertion

Length(A 100)
or by a general rule

Length(x i) if Item(x i u)
and Plus(i 1 jJ)
and not Item(x j v).

Like arrays and relational databases, data
defined by clauses has several advantages over
recursive data structures, Perhaps chief among
these is that clauses provide direct access to the
data in contrast to the recursively programmed
access obtained with recursive data structures.
Moreover, such conceptually direct access can be
implemented by the system equally well by means of
sequential or parallel search,

The problem with such data structures arises
when they are transformed into other data
structures. Consider, for example, the problem of
appending two sequences A and B defined by means of
a three argument predicate "Item®™ as above:

Append(A B 2z) ?

The goal can be solved by a single clause! Namely:
Append(x y apbend(x y))

However, we need other clauses to determine the

elements of the resulting sequence append(A B).
The following clauses do this:

Item(append(x y) i u) if Item(x i u) (App1)

Item(append(x y) j u) if Length(x k) (App2)
and Plus(i k j) '
and Item(y i u)

Length(append(x y) m) if Length(x k) (App3)

and Length(y 1)
and Plus(k 1 m)

In this case, if there are no other calls of the
form

Item(A f u) 7

the effect of destructive assignment to A can be
obtained in part by forward reasoning, resolving
the clauses which define A with the condition of
App1 above, The clauses which define A can then be
deleted and replaced by the new clauses which
together with App2 and the definition of B define
append(A B). Certain proof procedures, such as the
connection graph proof procedure, perform this
deletion automatically. Compared with conventional
destructive assignment, however, there is still a
major inefficiency involved in using App! over and
over again to derive the clauses in the definition
of append(A B) which replace the clauses in the
definition of A This inefficienoy is equivalent
to the frame problem, which is illustrated again in
the following example,

Consider, the problem of interchanging the

second and third items in the sequence A.
Interchange(A 2 3 z) ?

This too can be solved by a single clause:
Interchange(x i J inter(x i J))

Here the clauses

Item(inter(x i j) 1 u) if Item(x j u) (Int1)
Item(inter(x 1 j) j u) if Item(x i u) (Int2)
Item(inter(x 1 J) k u) if Item{x k u) (Int3)
and k £ 1
and k £]
Length(inter(x i j) k) if Length(x k) (Intd)

determine the elements of the resulting sequence
inter(a 2 3).

Clause Int3 is a frame axiom, which expresses
that most positions k have the same value in
inter(x i j) as they have in x. The frame problem
is the inefficiency which arises from reasoning
with the frame axiom. The inefficiency is
independent of whether the axiom is used backwards
or forwards, with or without automatic deletion.

Lonclusion

I have concentrated in this paper on three
problems:

(1) the discontinuity between declarative and
procedural uses of logic programming,

(2) the elimination of extralogicall features
from PROLOG, and

(3) destructive assignment.

The problem of destructive assignment is
possibly the single most important problem of logic
programming. Elsewhere I and my colleagues have
sketched possible solutions to the problem,
including the related frame problemn, These
solutions include the use of reflection principles
i metalogic programming [23] and the use of time
periods as parameters [27] of time-varying
relationships., These and other possible solutions
need to be studied in greater detail,

The problem of destructive assignment is
highlighted by an analysis of the use of
extralogical features in PROLOG. Such an analysis
also motivates extensions of the simple notion of
logic programming as Horn clauses with backward
reasoning. Extensions are needed both of
expressive power and problem-solving strategies,

Just as important, however, are the
methodological problems which arise with both
PROLOG and "pure" logic programming. The main
problem here is the discontinuity between
declarative and procedural modes of use. Some of
these problems might be alleviated by program
tranaformations,

Much of the past success of logic programming
is based upon the success of PROLOG. Careful study
of the problems of PROLOG is one of our best
guides, therefore, both to the more general
problems of logic programming and to the future
direcxtions logic programming might take.

Acknowledzenents :

Research in Logic Programming at Imperial College
has been supported by the Science and Engineering
Research Council and International Computers
Limited, I am indebted to Steve Gregory, Chris
Hogger, Frank Kriwaczek and Fariba Sadri for useful
comments on an earlier draft of this paper.

REFERENCES

(1] Hayes P.J. (1973), Computation and Deduction.
Proc. 2nd MFCS Symp. Czechoslovak Academy of
Sciences, pp 559-565.

[2] Kowalski R.A. (1979) Algorithm = Logic +
Control, CACM, August 1979. Vol. 22 pp.424-
436.

[3] Clark K.L., and Sickel S.,(Aug.1977) Predicate
Logic: A Calculus for Deriving Programs,
Proceedings of the Fifth International Joint
Conference on Artificial Intelligence,
Cambridge, Massachusetts, pp. 419-420.

[4] Clark K.L.,, Darlington J., Algorithm Classifi-
cation Through Synthesis, The Computer Journal
1980- Vol. 23! No. 1' PP. 61'65-

[5] Clark K.L:, (1981) The Synthesis and Verifica-

‘ tion of Logic Programs., Technical Report 81-
36, Imperial College, London, 1981.

[6] Clark K.L.,, McKeeman W.M., Sickel S, (1982),
Logic Program Specification of Numerical
Integration. In Logic Programming (eds. Clark
K.L. and Tarnlund S-A.), Academic Press, pp.
123-140.

[7] Hogger C.J., (1978) Goal-Oriented Derivation
of Logic Programs, Proceedings of Mathematical
Foundations of Computer Science, Lecture Notes
in Computer Science No. 64,

[8] Hogger C.J., (April 1981) Derivation of Logic
Programs, Journal of the ACM Vol.28,pp. 372~
392.

[9] Hogger C.J., (1984) Introduction to Logic
Programming. Academic Press,

[10] Kowalski R.A., (1984) The Relationship Between
Loglic Programming and Logic Specification.
Proec. Royal Society Discussion Meeting,
February 1984, In Mathematical Logic and
Programming Languages (eds. CAR Hoare and
J.C. Shepherdson) Prentice Hall International.

[11]) Clark K.L., (1978) Negation as failure. In
Logic and Databases, (eds. Gallaire H. and
Minker J.), Plenum Press, New York, pp 293-
322. .

{12] Lloyd J.W., Topor R.W., (1984) Making Prolog
More Expressive. Journal of Logic Programming
Vol 1. No. 3, pp 225-240. o

[13] Warren D.H.D., (1982) Higher-Order Extensions

to Prolog: Are They Needed? Machine

Intelligence, 1982, .

Clark K.L.,. McCabe F.G., (1980) IC-PROLOG

Aspects of its Implementation, In Proceedings

]

—

[15]
[16]

[171
[18]

[19]
[20]

[21]

[22]
[23]

(24]

[25]
(261

[27]

[28]

[29]

of Logic Programming workshop, Debrecen,
Hungary. .) :

Clark K.L., McCabe F.G.. (1979) The Cortrol
Facilities of IC-PROLOG. In Expert Systems in
the Micro-Electronic Age (ed. Michie D),
Edinburgh University Press, pp. 153-16T.
Clark K.L., McCabe F.G., Gregory S., (1982)
IC-PROLOG Language Features. In Logic
Programming, Clark and Tarnlund, Academic
Press, 1982, pp. 253-266.

Clark K.L., Gregory S., (0Oct.1981) &
relational language for parallel programming.
Proceedings of ACM Conference on Functional
Programming Languages and Computer Architec-
turé, New York, pp. 171-178. . .

Clark K.L., Gregory S., (Nov.1984) Notes on
Systems Programming in Parlog. Proceedings of
International Conference on 5th Generation
Computer Systems, Tokyo, Nov. 1984. North-
Holland,

Shapiro E.Y., (Jan.1984) Systems Programming
in Concurrent Prolog, POPL, Salt Lake City,
Utah. ’

Shapiro E.Y., Takeuchi A.,(1983) Object
Oriented Programming in Concurrent Prolog, New
Generation Computing 1, Springer Verlag.
Shapiro E.Y. (Jan.1983) A Subset of Concurrent
Prolog and Its Interpreter, Technical Report
TR-003, ICOT ~ Institute for New Generation
Computer Technology, Tokyo, Japan.

Kowalski R.A., (1981) Prolog as a Logic
Programming Lanuage., Proceedings of AICA
Congress, Pavia, Italy. ’

Kowalski R.A., (1983) Logic Programming,
Proceedings of the IFIP-83 Congress, North-
Holland, Amsterdam, pp. 133-145.

Sergot M.J., (1983) A Query-The-User Facility
for Logic Programs, in Integrated Interactive
Computer Systems, Degano P., and Sandwell E.,

(eds.), North-Holland, 1983. Also published

in New Horizons in Educational Computing,
Yazdani M. (ed.), Ellis Horwood, 1984, pp.
145-163.

Kowalski R.A.,, (1979) Logic for Problem
Solving. North-Holland/Elsevier, New York.
Kowalski RA, (1974) A Proof Procedure Using
Connection Graphs., In Journal of ACM Vol 22,
PpP. 572-595.

Kowalski R.A., Sergot M.J., (March 1985) &
Logic Based Calculus of Events. Department of
Computing, Imperial College, London.

Clark K.L., Gregory S., (1985) PARLQG:
parallel programming in logic. To appear in
ACM Trans. on Programming Languages and
Systems.)

Ueda K., (1985) Guarded Horn Clauses.
Technical Report TR-103, ICOT.

Parallelism

Chairman
John Conery
University of Oregon

