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Preface

o

This book, intended as a text for a course in electro-optics for electrical-
engineering or applied-physics students, has two primary objectives: to
.preSent a clear physical picture of the propagation of laser radiation in
various optical media and to teach the reader how to analyze and design
electro-optical devices.

Only through a study of the electromagnetic propagation can the char-
acteristics of an optical device be appreciated and its limitation be under-
stood. This characterization allows us to exploit the dmce as an element to
manipulate the laser radiation. The emphasis is therefore on the fundamen-
tal principles. An effort is made to bridge the gap between theory and
practice through the use of numerical examples based on real .situations.
Only classical electrodynamics is used in dealing with the coherent interac-
tion of laser radiation with various optical media. The optical properties of
these media are described by such material parameters as dielectric tensors,
gyration tensors, electro-optic coefficients, photo-elastic constants, and non-
linear susceptibilities. A very wide range of topics is included, as may be
seen from the Contents.

In writing this book we have assumed that the student has been intro-
duced to Maxwell’s equations in an intermediate course in electricity and
magnetism. It is further expected that the student has some mathematical
background in Fourier integrals, matrix algebra, and differential equations.

In the summer of 1982, the preliminary version of the manuscript was
used as the text of a graduate course in modern optics which P. Yeh taught
at the Taiwan University. He wishes to thank his colleagues and students at
the University for countless helpful remarks and discussions. Special nien-
tion must be made of Professor K. P. Wang of the Taiwan University, who
gave him the opportunity and encouragement to teach such a course. His
thanks are also extended to Dr. Monte Khoshnevisan and Dr. Chun-Ching
Shih for reading and commenting on the manuscript, and (o Dr. Hidehiko
Kuwamoto, Li. Emilio Sovero, and Mark Ewbank for many helpful discus-
s10Nns.
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1

Electromagnetic Fields

The ideal laser emits coherent electromagnetic radiation which can be
described by its electric and magnetic field vectors. The propagation of this
radiation field is governed by Maxwell’s equations. It is thus important to
familiarize ourselves at the outset with some of the basic properties of
electromagnetic fields.

In this introductory chapter we review and derive some basic relations
involving classical electromagnetic ficlds. Starting with Maxwell's equations
and the material equations, we obtain expressions for the energy density
and the energy flow of an electromagnetic field. We also derive the Poynting
theorem, the conservation laws, and the wave equations. We consider in
some detail the propagation of monochromatic plane waves and some of
their important properties. Finally, we discuss the concepts of phase velocity
and group velocity of a wave packet propagating in a dispersive medium.

1.1. MAXWELL’S EQUATIONS AND BOUNDARY CONDITIONS
1.1.1. Maxwell’s Equations

An electromagnetic field in space is described classically by two field
vectors, E and H, called the electric vector and the magnetic vector,
respectively. To include the effect of the field on matter, it is necessary to
introduce a second set of vectors, D and B, called the electric displacement
and the magnetic induction, respectively. These vectors are related by
Maxwell’s equations (in MKS units): ‘

JB
v XE+—37—0, (1.1-1)
v XH—Q=J, (1.1-2)
ot
v-D=p, (1.1-3)

v-B=0, (1.1-4)
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where J is the electric current density (amperes per square meter) and p is
the electric charge density (coulombs per cubic meter).

These four equations are the basic laws of electricity and magnetism in
their differential forms. Equation (1.1-1) is the differential form of Faraday’s
law of induction, which describes the creation of an induced electric field
due to a time-varying magnetic flux. Equation (1.1-2) is the differential form
of the generalized Ampeére law, which describes the creation of an induced
magpnetic field due to charge flow. Equation (1.1-3) is the differential form of
Coulomb’s law, which describes the relation between the electric-field distri-
bution and the charge distribution. Equation (1.1-4) may be regarded as a
statement of the absence of free magnetic monopoles.

The Maxwell equations (1.1-1), (1.1-2), (1.1-3), and (1.1-4) fully describe
the propagation of electromagnetic radiation in any medium. '

The charge density p and the current density J may be regarded as the
sources of the electromagnetic radiation. In many areas of optics one often
deals with the propagation of electromagnetic radiation in regions far from
the sources, where both p and J are zero. All the cases considered in this
book fall within this category. _

The Maxwell equations form a set of coupled partial differential equa-
tions involving the four basic quantities of the electromagnetic field, E, H,
D, and B. To allow a unique determination of the field vectors from a given
distribution of currents and charges, these equations must be supplemented
by relations that describe the effect of the electromagnetic field on material
media. These relations are known as constitutive equations (or material
equations) and are given by

D = ¢E = ¢,E + P, (1.1-5)
B=pH=pH+M, (1.1-6)

where the constitutive parameters ¢ and p are tensors of rank 2 and are
known as the dielectric tensor (or permittivity tensor) and permeability
tensor, respectively; P and M are the electric and magnetic polarizations,
respectively; and ¢, and p,, are the permittivity and permeability of vacuum,
respectively. If the material medium is isotropic, these tensors reduce to
scalars. In many cases the quantities ¢ and g can be assumed to be
independent of the field strengths. However, if the fields are sufficiently
strong, such as those obtained, for example, by focusing a laser beam or
applying a strong dc electric field to an electro-optic crystal, then the
dependence of these quantities on E and H must be considered. These
nonlinear ovtical effects will be considered in Chapter 7 and in Chapter 12.
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1.1.2. Boundary Conditions

Maxwell’s equations can be solved in regions of space where both ¢ and p
arg continuous. In optics, one often deals with situations in which the
physical properties (characterized by ¢ and ) change abruptly across one or
more smooth surfaces. The field vectors E, H, D, and B at a point on one
side of a smooth surface between two media, 1 and 2, are related to the field
vectors at the neighboring point on the opposite side of the interface by
boundary conditions that can be derived directly from Maxwell’s equations.

Consider now a very short cylinder drawn about a boundary surface, as
in Fig. 1.1(a), such that the end faces of the cylinder are in region 1 and 2
and are parallel to the surface of discontinuity. The height of the cylinder is
irfinitesimal, such that the end faces are arbitrarily close to the boundary
surface. An application of the Gauss divergence theorem

fv-FdV=J[F-dS (1.1-7)

to both sides of Eqgs. (1.1-3) and (1.1-4) yields
ne (BZ - Bl) = O’

(1.1-8a)
ll'(D2 - DI)‘_-O,

where n is the unit normal to the surface directed from medium 1 into

o
ik

{a) (b}

Figure 1.1. () A short cylinder about the interface between two media. S is the surface of
this cylinder. (b) A narrow rectangle about the interface between two media. C is the boundary
of this rectangle.
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medium 2, o is the surface charge density (coulombs per square meter), and
the subscripts refer to values at the surface in the two media. The boundary
conditions (1.1-8a) are often written as

B, = By,, ‘
(1.1-8b)
D,,—- D

n in=a’

where B,, = B,*n, B, =B, *n, D,, =D, *n, and D, = D, * n. In other
words, the normal component of the magnetic induction B is always
continuous, and the difference between the normal components of the
electric displacement D is equal in magnitude to the surface charge
density o.

Next, consider a small, narrow, rectangular circuit lcop around a section
of the boundary surface, as in Fig. 1.1(b), such that the long sides of the
rectangle are in regions 1 and 2 and parallel to the surface of discoatinuity.
The width of this rectangle is infinitesimal, so that the two long sides are
arbitrarily close to the boundary. An application of the Stokes’s theorem

v xF-dS=|F-dl (1.1-9)
J /

to both sides of Egs. (1.1-1) and (1.1-2) yields

nX(E2_El)=05
(1.1-10a)
nx (H,-H)=K,

where K is the surface current density (amperes per meter). Again, the
boundary conditions for the electric and magnetic field vectors (1.1-10a) are

often written as

E,,=E,,
: (1.1-10b)
H2: - le = K‘

where the subscript ¢ means the tangential component of e field vector.
(Note: The components of these field vectors tangential to the boundary
surface are still vectors in the plane tangent to the surface.) In other words,
the tangential component of the electric field vector E is always continuous
at the boundary surface, and the difference between the tangential compo-
nents of the magnetic field vector H is ¢-1al to the surface current
density K.
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In many areas of optics, one often deals with situations in which the
surface charge density o and the surface current density K both vanish. It
follows that, in such a case, the tangential components of E and H and the
normal components of D and B are continuous across the interface separat-
ing media 1 and 2. These boundary conditions are important in solving
many wave propagauon problems in optics, such as in guided-wave opucs
and wave propagation in layered media.

1.2. POYNTING’S THEOREM AND CONSERVATION LAWS

Conservation of energy for electromagnetic fields requires that the time rate
of change of electromagnetic energy contained within a certain volume, plus
the time rate of energy flowing out through the boundary surfaces of the
volume, be equal to the negative of the total work done by the fields on the
sources within the volume. For a point charge ¢, the rate of work done by
an external electromagnetic field is gv * E, where v is the velocity of the
charge. The magnetic field does no work on the point charge, since the
magnetic force is always perpendicular to the velocity. In the case of a
distributed charge and current, the rate of work done by the fields per unit
volume is J*E. A continuity equation which describes this balance of
energy exists. We will now derive this equation starting from the Maxwell
equations. By using Eq. (1.1-2), we can express the rate of work done per
unit volume by the electromagnetic fields as

aD

J'E=E-(v XxXH)-E- - (1.2-1)
If we now employ the vector 1denmy
v-ExH)=H-(v XE)-E-(v xH) (1.2-2)
and -use Eq. (1.1-1), the right-hand side of (1.2-1) becomes
aD
JE=-v-(ExH)-H- W“E'a (1.2-3)

If we now further assume that the material medium involved is linear in its
electromagnetic properties (i.e., € and p are independent of the field
strengths), Eq. (1.2-3) can be written

%—IIZ+ v-S=-J-E, (1.2-4)
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where U and S are defined as
U=4(E-D+B-H), (1.2-5)
S =EXH. (1.2-6)

The scalar U represents the energy density of the electromagnetnc fields and
has the dimensions of joules per cubic meter. The vector S, representing the
energy flow, is called the Poynting vector and has the dimensions of joules
per square meter per second. It is consistent to view {S] as the power per unit
area (watts per square meter) carried by the field in the direction of S. The
quantity ¥ * S thus represents the r.et electromagnetic power flowing out of
a unit volume. Equation (1.2-4) is known as the continuity equation or the
conservation of energy (Poynting’s theorem). The conservation laws for the
linear momentum of the electromagnetic fields can be obtained in a similar
way. This is left as a problem for the student (Problem 1.4).

1.3. COMPLEX-FUNCTION FORMALISM

In optics, we generally deal with steady-state sinusoidal time-varying fields,
for example, laser radiation. It is convenient to represent each field vector as
a complex function. As an example, consider some component of the field
vectors:

a(t) = |Akos(wt + a), (1.3-1)

where w is the angular frequency and a is the phase. If we define a complex
amplitude of a(r) by

A = |Ale™®, (1.3-2)
Eq. (1.3-1) can be written as
a(t) = Re[ 4e™']. (1.3-3)
We will often represent a(r) by
a(t) = Ae™' (1.3-4)

instead of by Eq. (1.3-1) or (1.3-3). This, of course, is not strictly correct;
when it happens, it is always understood that what is meant (c¢.g.) by Eq.
(1.3-4) is the real part of 4e'“’. In most situations, representation of field
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vectors with the complex form (1.3-4) poses no problems insofar as linear
mathematical operations, such as differentiation, integration, and summa-
tion, are concerned. The exceptions are cases that involve the product (or
powers) of field vectors, such as the energy density and Poynting vector. In
these cases, one must use the real form of the physical quantities.

As an example, consider the product of two sinusoidal functions @(t) and
b(t), where

a(t) = |Ajcos(wt + a)
= Re[ Ae'*’] (1.3-5)
and
b(t) = |Bjcos(wt + B)
— Re[ Be'*') (1.3-6)
with 4 = |A4|e’® and B = |B|e'®. Using the real functions, we get
a(1)b(1) = $|4B|[cos(2wt + a + B) + cos(a — B)].  (1.3-7)

But if we were to evaluate the product a(7)b(¢r) with the complex form of
the functions, we would get )

a(1)b(1) = ABe?** = |AB|e'®'+e*h) (1.3-8)

A comparison of the last result with Eq. (1.3-7) shows that the time-inde-
pendent (dc) term 1]ABjcos(a — B) is missing, and thus the use of the
complex form led to an error. It is generally true that the product of the real
parts of two complex numbers is not equal to the real part of the product of
these two complex numbers. In other words, if x and y are two arbitrary
complex numbers, the following is generally true:

Re[x]Rel y] = Re[xy]. (1.3-9)
1.3.1. Time-Averaging of Sinusoidal Products

In optical fields, the field vectors are rapidly varying functions of time. For
example, the period of a time-varying field with a wavelength of A = 1 pm
(one micrometer) is T = A/c = 0.33 X 107" s. One often considers the
time-averaged values rather than the instantaneous values of many physical
quantities such as the Poynting vector and the energy density. It is fre-



