COMPUTER ARCHITECTURE:
A MODERN SYNTHESIS

VOLUME 1. FOUNDATIONS

COMPUTER ARCHITECTURE:
A MODERN SYNTHESIS

VOLUME 1: FOUNDATIONS

albaatd Dasgupta
Edmiston Professor of Cofnputer Science
University of Southwestern Louisiana
Lafayette, Louisiana

John Wiley & Sons, Inc.
New York Chichester Brisbane Toronto Singapore
IR

Copvright © 1989, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada

Reproduction or transiation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner 1s unlawful, Requests for permission

or further information should be addressed to
the Permissions Department. John Wiley & Sofs

Library of Congress Cataloging-in-Publication Dato:
Dasgupta. Subrata.

Comoputer architecture : a modern synthesis / Subrata Dasgupta.

P cm

References: v. {, p. 331-366

Includes index.

Contents: v. {. Foundations.

ISBN 0-471-82310-4 (v. 1}

1. Computer architecture. 1. Title.
QAT76.9.A73D35 1989
004.2'2 —dcl19

Printed in the United States of America
1098765432

87-37188
Ip

S

NS

Okie view of computer architecture soes it as the study of such abstract
characteristics of computers and their interrelationships'that have led to the
“evolution” and proliferation of computer species. The analogy between com-
puterambitectureandtheammiuﬂandeﬂuﬁonuysmdiesinbiob;yk.in

some sense, evident. Lia 30
Unlike organisms, however,’ , -are designed and built entities; they
are artifacts. Thus, from another i computer architecture is seen as a

design discipline concerned with the design, development, description, and
verification of computer architectures. Here the appropriate analogy is perhaps
with building architecture. Indeed, in the latter context we use the term “archi-
tecture” both in the declarative sense as defining some set of abstract properties,
plan, or theme that a building exhibits as well as in the procedural sense of a
design discipline concerned with the process of producing these abstract
properties.

The analogy between computer architecture and building architecture is really
striking in this respect: they are both concerned with abstract properties that
ultimately depend on appropriate technologies for their effective lmplementg-

tion; yet gach has its own autonomous vocabulary, heuristic rules, and scientific

principles—constituting a universe of discourse—that are distinct from the
vocabulary, rules and principles of its underlying technology; the efficacy of both
architectural disciplines and principles are ultimately tested in social (i.e.,
human) environments; and finally, they are both, again as disciplines, preoccu-
pied with the problem of organization.

However, this text and its companion volume are not about these analogies,
fascinating though they are. In these two volumes I have attempted to deal
simultaneously with the two faces of computer architecture —its compendium
of architectural principles and the issues related to architectural design. The first
is concepigd with parts or subsystems viewed in convenient isolation. The

3¢5 o

oty

viii PREFACE

second with the design of the whole. The “synthesis” in the title refers, first, to
the unification of these two facets and, second, to my attempt to organize the
diversity of architectural principles within a single integrated framework.

The two texts are intended to form a coherent whole. However, they have
* been written and organized so that gach volume can be read, studied, and vied
independently of the other. The present volume, Foundattons is intended for
senior undergraduate students of computer science and engineering and consists
of a set of topics that can be covered in a one-semester senior undergraduate
course in computer architecture. In contrast, the companion volume, Advanced
Topics, is suitable as a graduate-lev-l text. There are, however, two aspects
common to the two books: shared heferences and an identical first chapter,
which establishes a common framework and terminology for both Foundations
and Advanced Topics..

Volume 1 is organized into two parts. Part I deals with issues common to all
computer architecture. In particular, Chapter 1 introduces the important idea of
architectural levels—a notion that pervades the entire book —and establishes
the connections between architecture on the one hand and design methodology,
compilers, microprogramming, software technology, and implementation tech-
nology on the other. Chapters 2 and 3 discuss, respectively and in more detail,
the issues of implementation technology and design methodology as they relate
to architecture.-

Part 11 discusses various facets of the architecture of uniprocessors. At its heart
is the register machine, which is discussed at different abstraction levels in
Chapters 4 and 5. Since the register machine is historically tied to the emergence
and development of microprogramming, a substantial part of Chapter 5 is
devoted to this topic.

Chapters 6 and 7 present two contrasting approaches to the development of -~
“language directed architectures’”’—alternatives to the register machine style.
The first is the (now almost “classical”) stack machine approach; the second is
the v.ry recently deveioped idea of reduced instruction sét computers, much in
vogue at this time.

Finally, Chapter 8, discusses various fundamental and important issues re-
lated to the memory aspects of architecture.

In concluding, I would like to note an important feature of the problem sets at
the end of each chapter: and that is (in keeping with the view of computer
architecture as a design discipline), the emphasis on design problems. Some of
these are suitable for solution as normal “assignments” whereas others are more
in the nature of “projects” that can be pursued in the course of an entire
semester.

Lafayette, Louisiana
July 31, 1987 Subrata Dasgupta

.z
ACKNOWLEDGMENTS

A project of this kind can only be conducted in an atmosphere in which one’s
research, teaching, and writing can be carried out in symbiotic harmony and
where one is relatively tree of administrative duties. I have been fortunate in
enjoying, for several years, precisely such a climate at the Center for Advanced
Computer Studies of the Uaiversity of Southwestern Louisiana. Its Director,
Terry Walker, has had much to do with this plwsant state of affairs. I thank him

for the environment and his support. .

I also must thank the Natio:al Science Foundatlon for supporting my recent
studies of computer architecture as a design discipline. The fruits of these studies
have advertently and inadvertently influenced several parts of this book. These
same researches formed the basis of continuing discussions of many aspects of
architecture with my students (and collaborators), notably Philip Wilsey, Ulises
Aguero, Alan Hooton, Cy Ardoin, and Sukhesh Patel. My ideas were also
formed under the influence of an ongoing transatlantic dialogue (stretching over
6 years) with Werner Damm formerly of Aachen T~chnical University and now
with the University of Oldenburg, West Germany. I thank them all for the
pleasure of their intellectual company. -

A part of this work was done while I was a visiting fellow at Wolfson College,
Oxford, and the Oxford University Computing Laboratory in the summer of
1986. I am very grateful to Professor C. A. R. Hoare and to Sir Raymond
Hoflenberg, President of Wolfson College, for providing me the facilities and an
enchanting physical environment in which to work.

Several persons were kind enough to read and review selected chapters from
the two volumes. I thank, in particular, Laxmi Bhuyan, Dipak Ghosal, John
Gurd, Steven Landry and Robert Mueller for their many helpful comments. I
also thank William M. Lively and Jgmes L. Beag who provided very useful
reviews of the manuscripts. For any residual errors that may be found in the text,
may I say, indhe time-honored tradition: mea culpa!

In the course of this work I received enormous logistical help from several
persons. In particular:

Cathy Pomier, who typed the manuscripts and undertook their many revi-
sions with invanable and sustained good humor. For her, the adjective “un-
flappable” is truly apt.

Nancy Pellegran, who typed the problem sets and the index and helped put the
finishing touches to the manuscript.

Philip Wilsey and Ulises Aguero who exercised their computational ingenuity
in producing the computer generated diagrams that appear in the text, and
who assisted me in innumerable ways.

ix

C)
\ ¢ s N

R:chardﬂoﬂmd.mymiﬁnddmratvmey,vbowadyupponedthm
project. e
: GemDawnmhdwEdﬁraW‘aey,whoWMwe,uﬂmvalu.
able advice during the later, crucial stages of my writing.
Jo¢ Dougherty, Editor, Gikia Stahl, Senior Copy Editor, and Dawn Reitz,
Semoerdw&anWﬂcy,fathmmmoedmngthephymml
proadiction ofttnsbmk.

I am grateful to each one of these individuals for their help.

My thanks to Robert Mueller, Werner Damm, Gert Dohmen, Philip Wilsey,
the Institute of Electrical and Electronic Engincers, Intermetrics, Inc., the Asso-
ciation for Computing Machinery, Digital Equipment Corporation, John Wiley
& Sons, Academic Press, McGraw-Hill, and MIT Press for granting me permis-
sion to reproduce diagrams and excerpts from their publications. I also thank
George Spix and Linda Turpin of Cray Research for providing information on -
some recent Cray systems.

Finally, a note of gratitude to my wife, Sarmistha, and sons, Jaideep and
Monish, for living patiently with this, seemingly interminable, project and for
their love and support.

PART ONE

CHAPTER 1

CHAPTER 2

-

CONTENTS

INTRODUCTION AND BACKGROUND

THE SCOPE OF COMPUTER ARCHITECTURE 3

11
1.2
13
14

1.8

110

Exo-architecture 3

Endo-architecture 5

Micro-architecture 6

Examples of Architectural Levels: The VAX Ftndy 7
1.4.1 Exo-architecture 7

1.4.2 Endo-architecture 8

1.4.3 Micro-architecture 10

Structure and Behavior 12

Computer Architecture as a Design Discipline 13
The Interaction of Computer Architectures

- and Compilers 15

1.7.1 The RISC Philosophy 15

1.7.2 Architectural Ideals from a Compiler Writer's
Perspective 16

1.7.3 Microcode Compilers and Micro-architectures 18

The Influence of Software Technology on Architectures 20

Implementation Technology and Computer Architecture 22

Bibliographic and Historical Notes 25

Problems 27

THE TECHNOLOGICAL FRAMEWORK 29

26

introduction 28

Levels of Integration 29
Technolog:esandTheerharacterisucs 32

The Pin-Limitation Problem 37

implementation Components 38

2.5.1 Semiconductor Memories as LSI/VLSI Components 42
2.5.2 Random Access Memories 47

25.3 Read-only Memories 52

2.5.4 Programmable Logic Arrays 56

2.5.5 Gate Arays 59

2.5.6 Fully Customized LSI/VLS! implementations 60
2.5.7 Bit-Siice Devices 66

2.5.8 Microprocessors 71

Bibliographic Remarks 71

Problems 72

CHAPTER 3 THE DESIGN PROCESS 74

PART TWO

CHAPTER 4

31
3.2

3.3

34

35

Introduction 74

The Relevance of Design Methods for Computer

Architecture 74

Characterizing “‘Design” 75

3.3.1 Design as Change 76

3.3.2 To Design is to Represent 77

3.3.3 Design Begins with Requirements 78

3.3.4 A Design Finishes as an Assembly 79

3.3.5 Design is Mostly a Satisficing Process 81

3.3.6 The Evolutionary Nature of Design 82

3.3.7 Designs are Sometimes Theorems 85

The Plausibility of Architectural Designs 90

3.4.1 . Architectural Designs as Specifications of Hardware
Systems 91

Bibliographic Remarks 94

Problems 96

UNIPROCESSORS 101

- .
REGISTER MACHINES |: THE OUTER ARCHITECTURE 102

4.1
42
43
4.4
45

46

47

48

49

410

Introduction 102 .

The von Neumann Model 104

The Complexity of Exo-architectures 108

Storage Organization 109

Some Consequences of the Use of Registers 113

4.5.1 Code Generation 114

4.5.2 Some Performance Studies on Register Machines 119

Data Types 121

4.6.1 Fixed-Point Numbers (Integers) 124

4.6.2 Floating-Point Numbers 126

4.6.3 Characters and Character Strings 129

4.6.4 Decimal Strings 130

Addressing Modes 132

47.1 Direct Addressing 133

4.7.2 Register Addressing 133

4.7.3 Immediate Addressing 133

4.7.4 Indirect Addressing 134

475 Indexed Addressing 135

4.7.6 Base-Displacement Addressing 136

The Operation Set 143

4.8.1 Operation Set Size and Instruction Organization 146

4.8.2 The Effect of Operation Frequencies on instruction
Organizations 147

The Word Length 151

491 Determinants of Word Length 151

49.2 The Impact of Word Length on Addressing
Capability 153

The Processor State 154

Problems 156

CHAPTER 8 REGISTER MACHINES li: INNER ARCHITECTURE AND
MICROPROGRAMMING 162

CHAPTER 6

CHAPTER 7

5.1
5.2

53

5.5

Introduction 162

A Micro-architecture for the von Neumann Model 164

5.2.1 The Data Path 164

5.2.2 The Control Unit 167

5.2.3 A Microprogrammed Control Unit for the von Neumann
Model 173

5.2.4 Microprogramming the von Neumann
Micro-architecture 180

Architectural Aspects of Microprogramming 189

5.3.1 The Control Memory 190

5.3.2 Microinstruction Sequencing 194

6.3.3 Microinstruction Word Organizations 200

5.3.4 Temporal Aspects of Microprogramming 211

Emuiation and Universal Host Machines 214

5.4.1 The Nature of Emulation 217

5.4.2 Characteristics of a Universal Host Machine 218

Bibliographic Remarks 223

Problems 225

THE EXPLOITATION OF STACKS 232

Y

6.6

Data Stacks for Block-Structured Programs 239
6.4.1 The Scope Rule 241
6.4.2 Dynamic Creation and Destruction of Declared
Objects 242
6.4.3 Instructions for Storage Allocation and Deaffocation 242
6.4.4 Displays and Stack Markers 244
Control Stacks 253
6.5.1 Combining Control and Expression Stacks 254

Bibliographic Remarks 255
Problems 258

LANGUAGE-DIRECTED ARCHITECTURES: THE “RISC" STYLE 259

7.1
72

73

74

Introduction 259

Reduced Instruction Set Computers: The initial

Postulates 260

7.2.1 The Causes of increased Architectural Complexity 261

7.2.2 The Problem with CISCs 263

7.2.3 Overall Cost Effectiveness of RISCs 265

Reduced Instruction Set Computers: Defining

Characteristics 265 :

7.3.1 implication of RISCs for Microprogramming 266

7.3.2 RISCs as Integrated High Level Languiage .
Machines 267

The Berkeley R'SC 267

7.4.1 The "Shape” of the Environment 268

7.4.2 The RISCH Exo-architecture 270

xiy CONTENTS

75

7.4.3 Overlapping Register Windows 273
7.4.4 Corroboration of the RISC Hypothesis 275
7.45 Refutation of the RISC Hypothesis 277
Bibliographic and Other Remarks 280
Problems 281

ASPECTS OF MEMORY 288

8.1
8.2
83

8.4

8.5

8.6

introduction 288

The Latency Problem 285

interleaved Memory 288

8.3.1 Hellerman’s Model 290

8.3.2 The Bumett-Coffman Mode! 291
Virtual Memory 292

8.4.1 The Principle of Locality 294
8.4.2 The Basic Issues in Virtual Memnry System Design 284
8.4.3 Paging 295

8.4.4 Segmentation 299

8.4.5 Paged Segmentation Schemes 302
8.4.6 Optimal Page Size 303 '
8.4.7 Page Replacement Algorithms 305
8.4.8 Thrashing 308

8.5.1 Evaluating Cache Performance 312

8.5.2 Placement Policies and Cache Organizations 312
8.5.3 Replacement Policy 316

8.5.4 Main Memory Update Policy 316

Memory Protection Using Capebilites 317
Bibiographic Remarks 322

Problems 322

APPENDIX A The ASCH Code

APPENDIX B The EBCDIC Code

- REFERENCES
NDEX

AR

PART ONE

INTRODUCTION
AND
BACKGROUND

CHAPTER 1

THE SCOPE OF COMPUTER
ARCHITECTURE

In this book the term computer architecture will be used in two complementary
ways. It will refer to certain logical and abstract properties of computers, the
nature of which will be described herein. The term will also be used to denote the
art, craft, and science-—or more generally, the discipline— involved in design-
ing these same logical and abstract properties. Thus, computer architecture (or
more simply, when there is no room for ambiguity, architecture) refers both to
certain characteristics of computers and to the design methods used in realizing
these characteristics.

1.1 EXO-ARCHITECTURE

Whiat are these logical and abstract properties that are of interest to the computer
architect? There are first the functional characteristics of computers: their exter-
nally observable behavior, properties, and capabilities that are of fundamental
interest to a certain group of users. These users include, in particular, system
programmers responsible for the construction of operating systems and com-
pilers for a gwen computer and the applications programmers mvolved in
writing programs in the computer’s assembly language.

The collection of externally observable behavior, properties, and capabilities
goes by several names in the architectural literature, including, simply, computer
architecture (Myers, 1982), the instruction set processor (ISP) level (Siewiorek,
Bell, and Newell, 1982), the conventional machine level (Tanenbaum, 1984), and
exo-architecture (Dasgupta, 1984). I will employ this last term in this book to
remind you that these properties reflect the external functional and logical
features of computérs. ,

The primary components of a computer’s exo-architecture are

The organization of programmable storage.

Data types and data structures, thelr encoding and representation.
Instruction formats.

The instruction (or operation code) set.

The modes of addressing and accessing data items and instructions.
Exception conditions.

AN R LN~

4 PART ONE INTRODUCTION AND BACKGROUND

A computer’s exo-architecture represents a particular abstraction level at
which we may choose to view it. An abstraction is a simplified or selective
description of a system that highlights some of the system properties while
suppressing others. In the case of complex systems, we may need to perform
different kinds of abstraction depending on the purpose at hand. Furthermore,
these different kinds of abstractions may be so selected as to form a hierarchic
relationship with one another. In that case, we talk of the existence of different
abstraction levels.

The abstraction level of a computer that we cail exo-architecture defines the
interface between the physical machine and any software that may be superim-
posed on it (Fig. 1.1). Indeed, the establishment of such a user interface is the
purpose of this abstraction level. The “‘users” of this interface are the operating
system and compiier writers and, generally, those who wish to program in
assembly language.

It is important to note that abstractions and abstraction levels are artifacts. We
invent them so that we have a means for organizing and understanding complex
phenomena, but there is nothing sacrosanct about them. Thus, two different
designers of an exo-architecture may choose and define two very distinct sets of
functional capabilities, depending on what they consider to be useful for the
user.”

““

Example 1.1

For most conventional single-processor systems the exo-architecture will consist
of the features cited earlier; namely, the instruction set, operand addressing
modes, the word length, the number of words (or bytes) of available main
memory, the number and types of high-speed programmable registers, and so
on. The user may never need to know such “internal” details as the precise
mechanisms by which instructions are interpreted by the hardware or whether,
for example, instructions are “pipelined.”

In contrast, the user of a vector processor may well have to know some details
of its internal processor organization in order to effectively exploit the potential
parallelism that such processors offer. The exo-architecture of these machines
may then be defined to reveal such details rather than to hide them as in
conventional processors. .

__sem/

Exo-architecture

' Physical Machine ’

FIGURE 1.1 Exo-architecture: The interface between software and physical machine.

CHAPTER 1 THE SCOPE OF COMPUTER ARCHITECTURE &

. 1.2 ENDO-ARCHITECTURE

An exo-architecture is realized by mechanisms implemented in hardware and
microcode (or firmware). We can, in fact, describe these mechanisms and their
interactions at various levels— for example, the circuit, logic (gate), or register
transfer levels. However, important as these levels are, for many purposes they
are too detailed —they contain too much information. To understand how the
hardware/firmware complex realizes an exo-architecture may require us to ab-
stract from the details of logic or even register transfer levels. This abstraction of
the hardware/firmware details has been given several names in the literature,
including processor architecture (Myers, 1982), computer organization (Hayes,
1978), and endo-architecture (Dasgupta, 1984). I will use this last term in this
book to emphasize that these characteristics constitute a description of a com-
puter’s internal organization.

Basically, a computer’s endo-architecture consists of the following
descriptions.

1. The capabilities and performance characteristics of its principal functional
components.
2. The ways in which these components are interconnected.
3. The nature of information flow bet veen coaponents.
4.. The logic and means by which such .intormation flow is controlied.

It is important to realize that the purpose of this abstraction level is really to
aid understondability. This abstraction is necessary not only fo the “reader” of
the design hut also for the designer so th... he or she need not have to manage
and master too . iny “low-level” details.

The relationshup between exo-architecture, endo-architecture, and the next
* lower (e.g., segist-r-transfer) level representation of the circuits that interpret and
mmmwmmummwdmﬁgm 1.2.

é PART ONE INTRODUCTION AND BACKGROUND

1.3 MICRO-ARCHITECTURE

As described in the foregoing sections, a processor’s endo-architecture is an
abstracted view of its internal hardware organization. However, architects in
practice may exercise considerable freedom in deciding how detailed the endo-
architectural design and description should be. A very special situation arises in
the cases of microprogrammed and user microprogrammable computers be-
cause, for these machine classes, the architect specifies the endo-architecture at a
level of detail necessary for the microprogrammer to write and implement the -
microcode for such machines.

I will reserve the term micro-architecture to denote the internal architecture
— the logical structure and functional capabilities— of a computer as seen by
the microprogrammer.

Remarks
Several points about micro-architecture are worth noting.

1. The purpose of micro-architecture as a distinct abstraction level is to estab-
lish and define the interface between the hardware and the superimposed
firmware (microcode). Thus, micro-architecture is to the microprogrammer
what exo-architecture is to the (assembly language) programmer.

2. Extending this parallel, and given the recent trend toward the use of high-
level microprogramming languages (HLMLs) and their compilers, the
micro-architecture of a processor defines those aspects of the hardware
system required either by the microprogrammer or by the HLML compiler
writer.

3. Although a micro-architecture may be viewed as a special version of a
machine’s endo-architecture, it is important to keep in mind that the latter
may be defined independent of (a) whether microprogramming or hard-
wired logic is used to implement the processor or (b) the precise style, logic,
and organization of the control unit. In other words, a given computer may
be designed and described meaningfully in terms of its exo-architecture, its
micro-architecture on which the microprogram is run so as to realize the
exo-architecture, and an endo-architecture that is an abstraction of the
micro-architecture/microprogram complex. The relationship between these
levels is shown in Figure 1.3. ' '

4. The micro-architecture of a processor, depending on how detailed it is, may

or may not coincide with the register-transfer level description. At the latter

level, computer structures are described in terms of suc primitives as
terminals, registers, delays, counters, clocks, memories, and combinational
circuits. The primitives from which such a description is composed bear
obvious one-to-one correspondences with common medium-scale integra-
tion (MSI} logic circuits. Generally speaking, the register-transfer level de-
scription will contain more information than the microprogrammer needs
to know, hence the micro-architecture abstracts somewhat from this level

(Fig. 1.3).

