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Series Introduction

This book is a part of a series of books designed to get programmers
the information they need in a quick and efficient manner.
Programmers don’t have time to hunt through huge unwieldy manu-
als trying to find the little piece of information they need to finish
their tasks. To that end, the design of these books has been optimized
by programmers for programmers.

All APIs have been organized into logical groups rather than al-
phabetically, so, you will find all of the APIs relating to semaphores
grouped together in one chapter, for example. The reasoning for this
is clear: A programmer looking up how to create a semaphore will
most likely want to know how to request it, release it, and so on, im-
mediately afterward.

In addition to grouping related APIs, any information that relates
to that group is provided in the same chapter. Each chapter is prefixed
with a quick summary of the system architecture related to those APIs,
and suffixed with any related structures. In some cases, other related
information may be found in the back of the chapter as well.

The architecture summaries at the beginning of the chapters are
designed to provide the programmer a quick overview or, in some cases,
a refresher on the topic in just a few minutes. I recommend that pro-
grammers take the time to read these overviews before delving into de-
sign and coding since so many problems arise from poor initial design
resulting from a lack of knowledge of the architecture of the topic.

The API pages were designed primarily for efficiency. Therefore,
each book in this series may have some small differences on the pages
contaming the actual APIs. For example, the Workplace Shell reference
does not contain any references to what “INCL._” to define for a given
APl since there is only one for the eniire set of Workplace Shell APIs.

It is my sincere hope that you will find the books in this series the
quickest, most informative, best organized programmers’ reference
books you have ever used. '

Marc Stock



Preface

This book, like the others in the series, is designed for speedy access to
thorough information. There are, however, a couple of things missing
from what you would expect in a control program reference. In short,
there is no coverage of DosDebug or DosDevIOCt] and their functions.
I did not cover these APIs because I felt they didn’t fit the scope of this
book, which encompasses 95 percent of OS/2 programmers. I also did-
n’t want this book to turn into a huge mega-reference in which you can
never find what you are looking for because the book is too unwieldy
and vast. For coverage of DosDebug and DosDevIOCtl, I recommend
you use the IBM OS/2 2.0 Technical Library—Conitrol Program Reference.
This book has one other shortfall—no examples. I wanted to write ex-
amples that were useful, and used the APIs in context together. This re-
quired a lot of additional work that I could not complete in time for
publication. Instead, I will make examples available through the
OS2DF1 Base APIs section library on CompuServe as soon as I com-
plete them.

I spent more time researching the subjects that people tend to
have the most trouble with—like named pipes and EAs. There are nu-
merous behaviors to both of these topics that are either incorrectly
documented or not documented at all (as of the time of this writing).
I also spent a great deal of time determining system limits, such as how
many timers can be started, how many queues, and so forth. I obtained
the information via extensive testing and from information I obtained
from others. As my testing progressed, I found many pieces of infor-
mation that neither I, nor most other people, were aware of. And while
the book is done, I feel I could go on forever finding more hidden
gems in the Control Program APIs. For now, I'll just have to leave them
to a second edition. . . .

Marc Stock
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How to Use This Book

This book is designed as a combination guide and reference, with the
emphasis on reference. If you are not familiar with the architecture of
a particular topic, I recommend that you read the architecture sum-
maries found at the beginning of every chapter. They are short and to
the point, but they can be very useful for improving your understand-
ing of the “big picture” or as a quick refresher on an operating system
feature you used long ago. The summaries also include a section that
discusses related system limitations, warnings, and the list of APIs be-
longing to that section.

If you are familiar with a particular topic and just need to go to a
specific API, the APIs can be found either by looking them up alpha-
betically in the chapter to which they belong, or from the API index
provided in the back. If you don’t know to which topic the API be-
longs, go to the index.

Each API includes a prototype of the call. The data types are in
boldface to help guide the eye when trying to determine which types
need to be passed. In the parameters section of each call, the parame-
ter name is shown in boldface/italics to aid in quick location of the pa-
rameter you are looking for. Note: The prototypes shown in this book
are for the C interfaces that are included with the OS/2 Toolkit. If you
are using C++, you will find that a few of the parameter types are a lit-
tle different from the ones shown in this reference. The Toolkit head-
ers for G++ use a new type called PCSZ for pointers to null-terminated
constants.

Each API also includes an Other Info section which contains mis-
cellaneous information needed for doing everything from determin-
ing which #define is required to include the API’s prototype, to which
DLL contains the code for that API. Here is an example of an Other
Info section:

OTHER INFO
Include file: bsedos.h Define: INCL_DOSFILEMGR
Ordinal: 257 DLL: DOSCALLS
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The Include listed contains the function prototype for the call and
any related #defines, structures, and more. Do not include this file at
the beginning of you code. This information is provided purely for ref-
erence purposes. You will also find the name of the #define that should
be included to cause the C preprocessor to pull in the necessary func-
tion prototypes and #defines so that the compiler will not complain.

Each API also includes a See Also section that includes the names
of related APIs that might be of interest. This section includes not only
APIs found in this book, but APIs that are a part of Presentation
Manager (PM) or the C standard libraries. The calls that are not in this
book are shown in italics. For example:

SEEALSO

DosCreateNPipe -235, DosDupHandle -221, DosOpen -223,
DosResetBuffer -247, felose

Following the See Also section, the Notes section contains any re-
lated information that may be important to the use of the API. This
may be anything from additional details to side-effects. If there is a par-
ticular side-effect to an API that is possibly destructive or difficult to de-
tect, then there will also be a Warnings section found after the Notes
section. I recommend that the warnings be read every time, even if you
intended to look up only the function prototype.

And finally, the Data Structures section found in the back of each
chapter contains the definitions for each structure used with the corre-
sponding topic’s APIs. The numbers on the right indicate the offset, in
bytes, from the beginning of the structure with the total size, in bytes, at
the top of the structure. At the end of each structure definition there is
a list itemizing which APIs use the structure so that structures can be
cross-referenced from API to structure, and from structure to API.
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Device

nput/Output

n OS/2, communication with devices can be performed with both

high-level and low-level interfaces. The high-level interfaces are APIs
like DosOpen, DosRead, and DosWrite. These allow the programmer
to perform input/output (I/O) on a device with the familiar file sys-
tem stream interface. Typically, the high-level interfaces are sufficient
for most device 1/0. The low-level interface for communicating with a
device through a device driver is DosDevIOCtl. Additionally, applica-
tions can determine which devices are attached by calling DosDev-
Config; DosPhysicalDisk will return information on partitionable
disks, and DosBeep will generate sound on the computer speaker.

1/0 Control Interface

DosDevIOCtl is an expandable I/O control facility that sends com-
mands and data to and from device drivers. The kernel takes generic
I/0 control packets and reformats them into request packets, and
then calls the device driver. The device driver then performs the re-



2 0S/2®Warp Control Program AP)

quested action. DosDevIOCtl can be used with either character or
block devices, but before it can be used, a device handle must be ob-
tained by calling DosOpen.

The DosDevIOCtl API is broken up into numerous categories.
Each category represents a different device. For example, IOCTL_
ASYNC represents the COM port. Within each category are several
functions that may be performed specific to that category, like setting
the COM port baud rate. The various categories and functions of
DosDevIOCitl are documented in IBM’s OS/2 2.0 Control Program
Reference.

Functions

DosBeep generates a specific frequency on the computer speaker
(pg- 2).

DosDevConfig queries information about attached devices (pg. 3).
DosDevIOCitl performs low-level I/O on a device driver via a device
handle (pg. 4).

DosPhysicalDisk returns information on partitionable disks (pg. 6).

DosBeep Device 1/O

Generates a specified frequency on the computer speaker.

SYNTAX
APIRET DosBeep(ULONG ulFrequency, ULONG ulDuration)

PARAMETERS

ulFrequency - input

The frequency, in Hertz (37 - 32767).
ulDuration - input

The duration of the sound, in milliseconds.

RETURNS
0 NO_ERROR 395 ERROR_INVALID_FREQUENCY
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OTHER INFO

Include file: bsedos.h Define: DOS_PROCESS
Ordinal: 286 DLL: DOSCALLS

SEEALSO
DosDevIOCt]l 4

NOTES

None

DosDevConfig Device /O

Returns information about attached devices.

SYNTAX
APIRET DosDevConfig(PVOID pDeviceInfo, ULONG ulDevType)

PARAMETERS

pDevicelnfo - output

The address of a buffer that will hold the returned information.
Currently, all information returned requires 1 byte.

ulDevType - input

The type of information to return. Specify one of the following:

Constant Description
DEVINFO_PRINTER 0 The number of attached printers.
DEVINFO_RS232 1 The number of RS§232 ports.
DEVINFO_FLOPPY 2 The number of diskette drives.

DEVINFO_COPROCESSOR 3 The presence of a math coprocessor
hardware. 0 = no coprocessor,
1 = coprocessor exists.

DEVINFO_SUBMODEL 4 The system submodel byte.
DEVINFO_MODEL 5 The system model byte.
DEVINFO_ADAPTER 6 The type of primary display adapter.

0 = monochrome, 1 = other.




