OS/2 Warp
Control
Program

API

Marc Stock




OS/2°Warp
Control Program API

Marc Stock

John Wiley & Sons, Inc.

New York @ Chichester @ Brisbane @ Toronto e Singapore



Publisher: Katherine Schowalter

Editor: Theresa Hudson

Managing Editor: Robert S. Aronds

Text Design: Tenenbaum Design

Composition: Impressions, A Division of Edwards Brothers, Inc.

Designations used by companies to distinguish their products are often claimed as trademarks. In all in-
stances where John Wiley & Sons, Inc. is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for more complete information
regarding trademarks and registration.

This text is printed on acid-free paper.

Copyright 1995 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard to the subject mat-
ter covered. It is sold with the understanding that the publisher is not engaged in rendering legal, account-
ing, or other professional service. If legal advice or other expert assistance is required, the services of a com-
petent professional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by section 107 or 108 of the 1976
United States Copyright Act without the permission of the copyright owner is unlawful. Requests for per-
mission or further information should be addressed to the Permissions Department, John Wiley & Sons,
Inc.

Library of Congress Cataloging-in-Publication Data:

ISBN 0471.03887-3

Printed in the United States of America
10987654321



Dedication

This book is dedicated in loving memory to my grandparents, Dave
and Betty Lefkowitz.

iii



Series Introduction

This book is a part of a series of books designed to get programmers
the information they need in a quick and efficient manner.
Programmers don’t have time to hunt through huge unwieldy manu-
als trying to find the little piece of information they need to finish
their tasks. To that end, the design of these books has been optimized
by programmers for programmers.

All APIs have been organized into logical groups rather than al-
phabetically, so, you will find all of the APIs relating to semaphores
grouped together in one chapter, for example. The reasoning for this
is clear: A programmer looking up how to create a semaphore will
most likely want to know how to request it, release it, and so on, im-
mediately afterward.

In addition to grouping related APIs, any information that relates
to that group is provided in the same chapter. Each chapter is prefixed
with a quick summary of the system architecture related to those APIs,
and suffixed with any related structures. In some cases, other related
information may be found in the back of the chapter as well.

The architecture summaries at the beginning of the chapters are
designed to provide the programmer a quick overview or, in some cases,
a refresher on the topic in just a few minutes. I recommend that pro-
grammers take the time to read these overviews before delving into de-
sign and coding since so many problems arise from poor initial design
resulting from a lack of knowledge of the architecture of the topic.

The API pages were designed primarily for efficiency. Therefore,
each book in this series may have some small differences on the pages
contaming the actual APIs. For example, the Workplace Shell reference
does not contain any references to what “INCL._” to define for a given
APl since there is only one for the eniire set of Workplace Shell APIs.

It is my sincere hope that you will find the books in this series the
quickest, most informative, best organized programmers’ reference
books you have ever used. '

Marc Stock



Preface

This book, like the others in the series, is designed for speedy access to
thorough information. There are, however, a couple of things missing
from what you would expect in a control program reference. In short,
there is no coverage of DosDebug or DosDevIOCt] and their functions.
I did not cover these APIs because I felt they didn’t fit the scope of this
book, which encompasses 95 percent of OS/2 programmers. I also did-
n’t want this book to turn into a huge mega-reference in which you can
never find what you are looking for because the book is too unwieldy
and vast. For coverage of DosDebug and DosDevIOCtl, I recommend
you use the IBM OS/2 2.0 Technical Library—Conitrol Program Reference.
This book has one other shortfall—no examples. I wanted to write ex-
amples that were useful, and used the APIs in context together. This re-
quired a lot of additional work that I could not complete in time for
publication. Instead, I will make examples available through the
OS2DF1 Base APIs section library on CompuServe as soon as I com-
plete them.

I spent more time researching the subjects that people tend to
have the most trouble with—like named pipes and EAs. There are nu-
merous behaviors to both of these topics that are either incorrectly
documented or not documented at all (as of the time of this writing).
I also spent a great deal of time determining system limits, such as how
many timers can be started, how many queues, and so forth. I obtained
the information via extensive testing and from information I obtained
from others. As my testing progressed, I found many pieces of infor-
mation that neither I, nor most other people, were aware of. And while
the book is done, I feel I could go on forever finding more hidden
gems in the Control Program APIs. For now, I'll just have to leave them
to a second edition. . . .

Marc Stock

vii



Acknowledgments

I would like to thank all the folks on IBM’s OS2DF1 forum on
CompuServe, who helped me to understand which questions were not
being addressed by the currently available material. The forum also
proved valuable in obtaining information that is not documented. I
highly recommend that programmers sign on to this forum when they
get stuck on a piece of code.

I'would also like to thank several people who added immeasurably
to the design and content of this manuscript: Mindy Pollack for lots of
good ideas and comments; Sam Detweiler for putting up with many
difficult questions; Matt “Named Pipe” Osborn (need I say more?);
and Chris Nack, Greg Cook, and Darian Polliachik for their excellent
comments on the architecture summaries.

Finally, I would like to thank my wife, Mary, for her patience and
support during this process.

ix



How to Use This Book

This book is designed as a combination guide and reference, with the
emphasis on reference. If you are not familiar with the architecture of
a particular topic, I recommend that you read the architecture sum-
maries found at the beginning of every chapter. They are short and to
the point, but they can be very useful for improving your understand-
ing of the “big picture” or as a quick refresher on an operating system
feature you used long ago. The summaries also include a section that
discusses related system limitations, warnings, and the list of APIs be-
longing to that section.

If you are familiar with a particular topic and just need to go to a
specific API, the APIs can be found either by looking them up alpha-
betically in the chapter to which they belong, or from the API index
provided in the back. If you don’t know to which topic the API be-
longs, go to the index.

Each API includes a prototype of the call. The data types are in
boldface to help guide the eye when trying to determine which types
need to be passed. In the parameters section of each call, the parame-
ter name is shown in boldface/italics to aid in quick location of the pa-
rameter you are looking for. Note: The prototypes shown in this book
are for the C interfaces that are included with the OS/2 Toolkit. If you
are using C++, you will find that a few of the parameter types are a lit-
tle different from the ones shown in this reference. The Toolkit head-
ers for G++ use a new type called PCSZ for pointers to null-terminated
constants.

Each API also includes an Other Info section which contains mis-
cellaneous information needed for doing everything from determin-
ing which #define is required to include the API’s prototype, to which
DLL contains the code for that API. Here is an example of an Other
Info section:

OTHER INFO
Include file: bsedos.h Define: INCL_DOSFILEMGR
Ordinal: 257 DLL: DOSCALLS

xi



Xii

OS/2®Warp Version 3

The Include listed contains the function prototype for the call and
any related #defines, structures, and more. Do not include this file at
the beginning of you code. This information is provided purely for ref-
erence purposes. You will also find the name of the #define that should
be included to cause the C preprocessor to pull in the necessary func-
tion prototypes and #defines so that the compiler will not complain.

Each API also includes a See Also section that includes the names
of related APIs that might be of interest. This section includes not only
APIs found in this book, but APIs that are a part of Presentation
Manager (PM) or the C standard libraries. The calls that are not in this
book are shown in italics. For example:

SEEALSO

DosCreateNPipe -235, DosDupHandle -221, DosOpen -223,
DosResetBuffer -247, felose

Following the See Also section, the Notes section contains any re-
lated information that may be important to the use of the API. This
may be anything from additional details to side-effects. If there is a par-
ticular side-effect to an API that is possibly destructive or difficult to de-
tect, then there will also be a Warnings section found after the Notes
section. I recommend that the warnings be read every time, even if you
intended to look up only the function prototype.

And finally, the Data Structures section found in the back of each
chapter contains the definitions for each structure used with the corre-
sponding topic’s APIs. The numbers on the right indicate the offset, in
bytes, from the beginning of the structure with the total size, in bytes, at
the top of the structure. At the end of each structure definition there is
a list itemizing which APIs use the structure so that structures can be
cross-referenced from API to structure, and from structure to API.



Table of Contents

Chapter |

Chapter 2

Chapter 3

Chapter 4

Series Introduction

Preface

Acknowledgments

How to Use This Book
Device 1/O

DosBeep

DosDevConfig
DosDevIOCtl
DosPhysicalDisk

Dynamic Linking & Resources
DosFreeModule
DosloadModule
DosQueryAppType
DosQueryModuieHandie
DosQueryModuleName
DosQueryProcAddr
DosQueryProcType
DosFreeResource
DosGetResource
DosQueryResourceSize
Error Processing
DosErrClass

DosError

Exceptions
DosRaiseException
DosSetExceptionHandler
DosUnsetExceptionHandler
DosUnwindException
DosAcknowledgeSignalException
DosSendSignalException
DosSetSignaiExceptionFocus
DosEnterMustComplete
DosExitMustComplete
Exception Handling Structures

vii

0o AW X X

14
17
17
8
20
2
22
24
27
28
30
31
36
38
39
40
42
43
44
46
47
48

xiit



Xiv 0OS/2%Warp Version 3

Exception Handler Information 51
System Defined Exceptions 52
Chapter 5 File Management 58
DosClose/DosProtectClose 64
DosCopy 65
DosDelete 67
DosEditName 68
DosForceDelete 70
DosMove 71
DosOpen/DosProtectOpen 73
DosRead/DosProtectRead 79
DosSetFilelnfo/DosProtectSetFileinfo 80
DosSetFileLocks/DosProtectSetFileLocks 82
DosSetFilePtr/DosProtectSetFilePtr 84
DosSetFileSize/DosProtectSetFileSize 86
DosSetPachinfo 87
DosSetVerify 89
DosWrite/DosProtectWrite 90
DosDupHandle 91
DosQueryFHState/DosProtectFHState 93
DosQueryHType 95
DosSetFHState/DosProtectFHState 97
DosSetMaxFH 98
DosSetRelMaxFH 99
DosEnumActribute/DosProtectEnumAttribute 101
DosQueryFilelnfo/ DosProtectQueryFileinfo 103
DosQueryPathinfo 106
DosQuerySysinfo 109
DosQueryVerify 112
DosFindClose 113
DosFindFirst 13
DosFindNext 119
DosCreateDir 121
DosDeleteDir 123
DosQueryCurrentDir 124
DosQueryCurrentDisk 125
DosSetCurrentDir 126
DosScanEnv 127
DosSetDefaultDisk 127
DosSearchPath 129
File Management Structures 131

Extended Attribute Data Types 139



Contents XV
Chapter 6 File System 141
DosFSAttach 145
DosFSCtl 147
DosQueryFSAttach (50
DosQueryFSinfo 152
DosResetBuffer I53
DosSetFSinfo 154
DosShutdown 155
File System Structures 157
Chapter 7  Memory Management 159
DosAllocMem 162
DosfFreeMem 165
DosSetMem 166
DosQueryMem 169
DosAllocSharedMem 172
DosGetNamedSharedMem 175
DosGetSharedMem 177
DosGiveSharedMem (78
DosSubAllocMem 180
DosSubFreeMem 182
DosSubSetMem 183
DosSubUnsetMem 185
DosAliocThreadiLocalMemory 186
DosFreeThreadLocalMemory 187
Chapter 8  Message Management 188
DosGetMessage 190
DoslnsertMessage 193
DosPutMessage 195
DosQueryMessageCP 196
Chapter 9 National Language Support 201
DosQueryCp 205
DosSetProcessCp 206
DosMapCase 208
DosQueryColliate 209
DosQueryCtryinfo 210
DosQueryDBCSEnv 211
National Language Structures 213
Chapter 10 Pipes 215
DosClose 220
DosDupHandie 221
DosOpen 223
DosRead 225

DosWrite

227



xvi

0S/2®Warp Version 3

Chapter | |

Chapter 12

Chapter 13

DosCreatePipe
DosCallNPipe
DosConnectNPipe
DosCreateNPipe
DosDisConnectNPipe
DosPeekNPipe
DosQueryNPHState
DosQueryNPipelnfo
DosQueryNPipeSemState
DosResetBuffer
DosSetNPHState
DosSetNPipeSem
DosTransactNPipe
DosWaitNPipe
Pipes Structures
Processes & Threads
DosEnterCritSec
DosExecPgm
DosExitCritSec
DosExitList
DosKillProcess
DosWaitChild
DosCreateThread
DosKil{Thread
DosResumeThread
DosSuspendThread
DosWaitThread
DosExit
DosGetinfoBlocks
DosSetPriority
Process/Thread Structures
Queues
DosCloseQueue
DosQueryQueue
DosWriteQueue
DosCreateQueue
DosPeekQueue
DosPurgeQueue
DosReadQueue
DosOpenQueue
Queue Structures
Semaphores
DosCloseEventSem

230
23}
234
235
239
240
242
244
245
247
247
249
251
253
254
256
258
259
263
264
267
269
271
273
274
275
276
277
278
280
283
286
288
289
290
291
293
296
296
299
301
302
306



Contents

xXVii

Chapter 14

Chapter 15

Chapter 16

DosCreateEventSem
DosOpenEventSem
DosPostEventSem
DosQueryEventSem
DosResetEventSem
DosWaitEventSem
DosCloseMutexSem
DosCreateMutexSem
DosOpenMutexSem
DosQueryMutexSem
DosReleaseMutexSem
DosRequestMutexSem
DosAddMuxWaitSem
DosCloseMuxWaitSem
DosCreateMuxWaitSem
DosDeleteMuxWVaitSem
DosOpenMuxWaitSem
DosQueryMuxWaitSem
DosWaitMuxWaitSem
Semaphore Structures
Session Management
DosSelectSession
DosSetSession
DosStartSession
DosStopSession

Session Management Structures
Timers
DosAsynchTimer
DosSleep
DosStartTimer
DosStopTimer
DosGetDateTime
DosSetDateTime

Date & Time Structures
Miscellaneous
DosFlatToSel
DosSelToFlat
DosQueryExtLIBPATH
DosSetExtLIBPATH
Appendix A

Index

307
308
309
310
311
312
314
315
316
318
319
320
322
323
325
327
328
330
331
334
335
337
338
340
344
346
353
355
356
357
358
359
360
361
362
363
364
365
366
369

371



Device

nput/Output

n OS/2, communication with devices can be performed with both

high-level and low-level interfaces. The high-level interfaces are APIs
like DosOpen, DosRead, and DosWrite. These allow the programmer
to perform input/output (I/O) on a device with the familiar file sys-
tem stream interface. Typically, the high-level interfaces are sufficient
for most device 1/0. The low-level interface for communicating with a
device through a device driver is DosDevIOCtl. Additionally, applica-
tions can determine which devices are attached by calling DosDev-
Config; DosPhysicalDisk will return information on partitionable
disks, and DosBeep will generate sound on the computer speaker.

1/0 Control Interface

DosDevIOCtl is an expandable I/O control facility that sends com-
mands and data to and from device drivers. The kernel takes generic
I/0 control packets and reformats them into request packets, and
then calls the device driver. The device driver then performs the re-



2 0S/2®Warp Control Program AP)

quested action. DosDevIOCtl can be used with either character or
block devices, but before it can be used, a device handle must be ob-
tained by calling DosOpen.

The DosDevIOCtl API is broken up into numerous categories.
Each category represents a different device. For example, IOCTL_
ASYNC represents the COM port. Within each category are several
functions that may be performed specific to that category, like setting
the COM port baud rate. The various categories and functions of
DosDevIOCitl are documented in IBM’s OS/2 2.0 Control Program
Reference.

Functions

DosBeep generates a specific frequency on the computer speaker
(pg- 2).

DosDevConfig queries information about attached devices (pg. 3).
DosDevIOCitl performs low-level I/O on a device driver via a device
handle (pg. 4).

DosPhysicalDisk returns information on partitionable disks (pg. 6).

DosBeep Device 1/O

Generates a specified frequency on the computer speaker.

SYNTAX
APIRET DosBeep(ULONG ulFrequency, ULONG ulDuration)

PARAMETERS

ulFrequency - input

The frequency, in Hertz (37 - 32767).
ulDuration - input

The duration of the sound, in milliseconds.

RETURNS
0 NO_ERROR 395 ERROR_INVALID_FREQUENCY



Device Input/Output 3

OTHER INFO

Include file: bsedos.h Define: DOS_PROCESS
Ordinal: 286 DLL: DOSCALLS

SEEALSO
DosDevIOCt]l 4

NOTES

None

DosDevConfig Device /O

Returns information about attached devices.

SYNTAX
APIRET DosDevConfig(PVOID pDeviceInfo, ULONG ulDevType)

PARAMETERS

pDevicelnfo - output

The address of a buffer that will hold the returned information.
Currently, all information returned requires 1 byte.

ulDevType - input

The type of information to return. Specify one of the following:

Constant Description
DEVINFO_PRINTER 0 The number of attached printers.
DEVINFO_RS232 1 The number of RS§232 ports.
DEVINFO_FLOPPY 2 The number of diskette drives.

DEVINFO_COPROCESSOR 3 The presence of a math coprocessor
hardware. 0 = no coprocessor,
1 = coprocessor exists.

DEVINFO_SUBMODEL 4 The system submodel byte.
DEVINFO_MODEL 5 The system model byte.
DEVINFO_ADAPTER 6 The type of primary display adapter.

0 = monochrome, 1 = other.




