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Preface

To the Teacher. This book is designed to introduce a student to some
of the important ideas of algebraic topology by emphasizing the re-
lations of these ideas with other areas of mathematics. Rather than
choosing one point of view of modern topology (homotopy theory,
simplicial complexes, singular theory, axiomatic homology, differ-
ential topology, etc.), we concentrate our attention on concrete prob-
lems in low dimensions, introducing only as much algebraic machin-
ery as necessary for the problems we meet. This makes it possible to
see a wider variety of important features of the subject than is usual
in a beginning text. The book is designed for students of mathematics
or science who are not aiming to become practicing algebraic topol-
ogists—without, we hope, discouraging budding topologists. We also
feel that this approach is in better harmony with the historical devel-
opment of the subject.

What would we like a student to know after a first course in to-
pology (assuming we reject the answer: half of what one would like
the student to know after a second course in topology)? Our answers
to this have guided the choice of material, which includes: under-
standing the relation between homology and integration, first on plane
domains, later on Riemann surfaces and in higher dimensions; wind-
ing numbers and degrees of mappings, fixed points theorems; appli-
cations such as the Jordan curve theorem, invariance of domain; in-
dices of vector fields and Euler characteristics; fundamental groups
and covering spaces; the topology of surfaces, including intersection
numbers; relations with complex analysis, especially on Riemann sur-
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viii Preface

faces; ideas of homology, De Rham cohomology, Cech cohomology,
and the relations between them and with fundamental groups; meth-
ods of calculation such as the Mayer—Vietoris and Van Kampen theo-
rems; and a taste of the way algebra and “functorial” ideas are used
in the subject.

To achieve this variety at an elementary level, we have looked at
the first nontrivial instances of most of these notions: the first ho-
mology group, the first De Rham group, the first Cech group, etc.
In the case of the fundamental group and covering spaces, however,
we have bowed to tradition and included the whole story; here the
novelty is on the emphasis on coverings arising from group actions,
since these are what one is most likely to meet elsewhere in mathe-
matics.

We have tried to do this without assuming a graduate-level knowl-
edge or sophistication. The notes grew from undergraduate courses
taught at Brown University and the University of Chicago, where about
half the material was covered in one-semester and one-quarter courses.
By choosing what parts of the book to cover—and how many of the
challenging problems to assign—it should be possible to fashion courses
lasting from a quarter to a year, for students with many backgrounds.
Although we stress relations with analysis, the analysis we require or
develop is certainly not “hard analysis.”

We start by studying questions on open sets in the plane that are
probably familiar from calculus: When are path integrals independent
of path? When are 1-forms exact? (When do vector fields have po-
tential functions?) This leads to the notion of winding number, which
we introduce first for differentiable paths, and then for continuous
paths. We give a wide variety of applications of winding numbers,
both for their own interest and as a sampling of what can be done
with a little topology. This can be regarded as a glimpse of the general
principle that algebra can be used to distinguish topological features,
although the algebra (an integer!) is fairly meager.

We introduce the first De Rham cohomology group of a plane do-
main, which measures the failure of closed forms to be exact. We
use these groups, with the ideas of earlier chapters, to prove the Jor-
dan curve theorem. We also use winding numbers to study the sin-
gularities of vector fields. Then 1-chains are introduced as convenient
objects to integrate over, and these are used to construct the first ho-
mology group. We show that for plane open sets homology, winding
numbers, and integrals all measure the same thing; the proof follows
ideas of Brouwer, Artin, and Ahlfors, by approximating with grids.

As a first excursion outside the plane, we apply these ideas to sur-
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faces, seeing how the global topology of a surface relates to local
behavior of vector fields. We also include applications to complex
analysis. The ideas used in the proof of the Jordan curve theorem are
developed more fully into the Mayer—Vietoris story, which becomes
our main tool for calculations of homology and cohomology groups.

Standard facts about covering spaces and fundamental groups are
discussed, with emphasis on group actions. We emphasize the con-
struction of coverings by patching together trivial coverings, since
these ideas are widely used elsewhere in mathematics (vector bundles,
sheaf theory, etc.), and Cech cocycles and cohomology, which are
widely used in geometry and algebra; they also allow, following
Grothendieck, a very short proof of the Van Kampen theorem. We
prove the relation among the fundamental group, the first homology
group, the first De Rham cohomology group, and the first Cech co-
homology group, and the relation between cohomology classes, dif-
ferential forms, and the coverings arising from multivalued functions.

We then turn to the study of surfaces, especially compact oriented
surfaces. We include the standard classification theorem, and work
out the homology and cohomology, including the intersection pairing
and duality theorems in this context. This is used to give a brief in-
troduction to Riemann swifaces, emphasizing features that are acces-
sible with little background and have a topological flavor. In partic-
ular, we use our knowledge of coverings to construct the Riemann
surface of an algebraic curve; this construction is simple enough to
be better known than it is. The Riemann—Roch theorem is included,
since it epitomizes the way topology can influence analysis. Finally,
the last part of the book contains a hint of the directions the subject
can go in higher dimensions. Here we do include the construction and
basic properties of general singular (cubical) homology theory, and
use it for some basic applications. For those familiar with differential
forms on manifolds, we include the generalization of De Rham theory
and the duality theorems.

The variety of topics treated allows a similar variety of ways to use
this book in a course, since many chapters or sections can be skipped
without making others inaccessible. The first few chapters could be
used to follow or compliment a course in point set topology. A course
with more algebraic topology could include the chapters on funda-
mental groups and covering spaces, and some of the chapters on sur-
faces. It is hoped that, even if a course does not get near the last third
of the book, students will be tempted to look there for some idea of
where the subject can lead. There is some progression in the level of
difficulty, both in the text and the problems. The last few chapters
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may be best suited for a graduate course or a year-long undergraduate
course for mathematics majors.

We should also point out some of the many topics that are omitted
or slighted in this treatment: relative theory, homotopy theory, fibra-
tions, simplicial complexes or simplicial approximation, cell com-
plexes, homology or cohomology with coefficients, and serious ho-
mological algebra.

To the Student. Algebraic topology can be thought of as the study of
the shapes of geometric objects. It is sometimes referred to in popular
accounts as “rubber-sheet geometry.” In practice this means we are
looking for properties of spaces that are unchanged when one space
is deformed into another. “Doughnuts and teacups are topologically
the same.” One problem of this type goes back to Euler: What re-
lations are there among the numbers of vertices, edges, and faces in
a convex polytope, such as a regular solid, in space? Another early
manifestation of a topological idea came also from Euler, in the
Konigsberg bridge problem: When can one trace out a graph without
traveling over any edge twice? Both these problems have a feature
that characterizes one of the main attractions, as well as the power,
of modern algebraic topology—that a global question, depending on
the overall shape of a geometric object, can be answered by data that
are collected locally. Since these are so appealing—and perhaps to
capture your interest while we turn to other topics—they are included
as problems with hints at the end of this Preface.

In fact, modern topology grew primarily out of its relation with
other subjects, particularly analysis. From this point of view, we are
interested in how the shape of a geometric object relates to, or con-
trols, the answers to problems in analysis. Some typical and histor-
ically important problems here are:

(i) whether differential forms w on a region that are closed (do =

0) must be exact (w = du.) depends on the topology of the region;

(it) the behavior of vector fields on a surface depends on the topol-
ogy of the surface; and

(iii) the behavior of integrals [ dx/V/R(x) depends on the topology

of the surface y2 = R(x), here with x and y complex variables.

In this book we will begin with the first of these problems, working
primarily in open sets in the plane. There is one disadvantage that
must be admitted right away: this geometry is certainly flat, and lacks
some of the appeal of doughnuts and teacups. Later in the book we
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will in fact discuss generalizations to curved spaces like these, but at
the start we will stick to the plane, where the analysis is simpler. The
topology of open sets in the plane is more interesting than one might
think. For example, even the question of the number of connected
components can be challenging. The famous Jordan curve theorem,
which is one of our goals here, says that the complement of a plane
set that is homeomorphic to a circle always has two components—a
fact that will probably not surprise you, but whose proof is not so
obvious. We will also spend some time on the second problem, which
includes the popular problem of whether one can “comb the hair on
a billiard ball.” We will include some applications to complex anal-
ysis, later discussing some of the ideas related to the third problem.

To read this book you need a basic understanding of fundamental
notions of the other topology, known as point set topology or general
topology. This means that you should know what is meant by words
like connected, open, closed, compact, and continuous, and some of
the basic facts about them. The notions we need are recalled in Ap-
pendix A; if most of this is familiar to you, you should have enough
prerequisites. Because of our approach via analysis, you will also
need to know some basic facts about calculus, mainly for functions
of one or two variables. These calculus facts are set out in Appendix
B. In algebra you will need some basic linear algebra, and basic no-
tions about groups, especially abelian groups, which are recalled or
proved in Appendix C.

There will be many sorts of exercises. Some exercises will be rou-
tine applications of or variations on what is done in the text. Those
requiring (we estimate) a little more work or ingenuity will be called
problems. Many will have hints at the end of the book, for you to
avoid looking at. There will also be some projects, which are things
to experiment on, speculate about, and try to develop on your own.
For example, one general project can be stated right away: as we go
along, try to find analogues in 3-space or n-space for what we do in
the plane. (Some of this project is carried out in Part XI.)

Problem 0.1. Suppose X is a graph, which has a finite number of
vertices (points) and edges (homeomorphic to a closed interval), with
each edge having its endpoints at vertices, and otherwise not inter-
secting each other. Assume X is connected. When, and how, can you
trace out X, traveling along each edge just once? Can you prove your
answer?
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Exercise 0.2. Let v, e, and f be the number of vertices, edges, and
faces on a convex polyhedron. Compute these numbers for the five
regular solids, for prisms, and some others. Find a relation among
them. Experiment with other polyhedral shapes.

v=6e=12, =8
(Note: This problem is “experimental.” Proofs are not expected.)
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