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PREFACE

In the last decade, a number of new techniques, such as Feynman
diagrams, the Green’s function method and the linear response theory,
have been developed and applied to many physical problems in statistical
mechanics. This book is intended to be an introduction to such new tech-
niques at an elementary level. In chapters 1 and 2, the basic ideas in
statistical mechanics are discussed, and in chapter 3, the comulant expan-
sion technique is introduced as a general method. By using this tech-
nique, one of the traditional problems in statistical mechanics, i.e. the
cluster expansion of an imperfect gas, is discussed. Quantum mechanics
plays a major role after chapter 5 where the method of second quantiza-
tion, which is followed by the perturbational treatment of problems in
chapters 6 and 7, is introduced. Chapter 8 is devoted to the Green’s func-
tion method, while the perturbation method used as a systematic method
of calculating the Green’s functions, is discussed in chapter 9. This method
is then applied in chapter 10 to the electron-phonon system, Until this
chapter, the concern has mainly been with systems in thermal equilibrium.
The linear response theory is introduced in chapter 11, and the expression
for electrical conductivity which will then be exploited to calculate the
electrical resistivity due to impurities in the last chapter is derived. The
arguments in this book are maintained at an elementary level, being
restricted to simple mathematics such as ordinary calculus, Stirling’s
formula, elementary contour integrals, etc.

I have omitted some interesting subjects such as superfluidity, su-
perconductivity, phase transitions, etc. in view of the fact that these
topics are too advanced for a book at this level. I believe that the methods
of tackling problems in statistical mechanics can, however, be learned
through the rather limited number of topics selected for this book.

I would like to take this opportunity to express my gratitude to Pro-
fessor Yasushi Takahashi of the Theoretical Physics Institute, The Uni-
versity of Alberta, for his admirable efforts in translating this work into
English.

I also wish to thank Professor Sadao Nakajima for his suggestions and
helpful comments during the writing of this book. Special thanks are due
to members of the University of Tokyo Press for their kind cooperation.

R.A.
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Chapter 1

CLASSICAL STATISTICAL MECHANICS OF SYSTEMS
IN THERMAL EQUILIBRIUM:

1.1 INTRODUCTION

The materials we find about us are made up of a large number of
particles. For example, 1 cm3 of a gas at 0°C and standard pressure
contains 2.7 x 10! molecules. Also, approximately 1022 electrons are
moving in 1 cm3 of a metal such as copper or aluminum. The motion
of such many-body systems may be described by a mechanical equation
of motion. In classical theory, if the position and momentum of a system
at a specific time is known, then the motion of the system can be deter-
mined uniquely. In quantum mechanics, causality in the classical sense
does not hold true, but a causal description is still possible in that the
motion of the system can be described by the Schrédinger equation.

However, it is extremely difficult to calculate the mechanical motion
of a many-body system. This is apparent from the problems created by
3-body systems, for example, that of the sun, earth and moon which
plagued nineteenth-century physicists and mathematicians. Moreover,
even if we can calculate the motien of 10!® particles, what good is it?
We do not observe microscopic motion, but macroscopic properties
such as pressure and specific heat in the case of a gas. Statistical me-
chanics gives us the necessary macroscopic information from a micro-
scopic standpoint. In this chapter we shall explain the basic ideas of
statistical mechanics under the condition that the systems under con-
sideration are in thermal equilibrium. Let us first consider some examples
in which the motion is classically described.

1.2 SiMpLE EXAMPLES IN CLASSICAL MECHANICS

Example 1: One-dimensional Simple Harmonic Oscillator
Consider a one-dimensional simple harmonic oscillator of mass m

3



4 1 CLASSICAL STATISTICAL MECHANICS OF SYSTEMS

and angular frequency w. Let the coordinate and momentum be x and
p (=mx), respectively. The energy of this oscillator is a constant of
motion and is given by

2 252
e — 2p_m mwzx . (1.1

The right-hand side of Eq. (1.1) is called the Hamiltonian H(x, p) and the
equation of motion can be written as

._9H . _ _3H (1.2)

o’ P T
It is convenient to describe the motion of the oscillator in an x—p plane

which is called the phase space or 4 space. From Eq. (1.1) we see that the
orbit in y space is an ellipse (Fig. 1).

NS

Fig. 1

Example 2: A Free Particle in a Box

Let us assume there is a particle in a cubic box of side L, with no
forces acting on it. We shall further assume that collisions between the
particle and walls of the box are smooth and completely elastic. That is,
on collision, the normal component of the velocity changes sign only,
while the tangential component remains the same. Therefore, in the
plane spanned by the coordinate x and the momentum p,, the point
representing the particle performs the motion indicated in Fig. 2.

The same is true for the y and z directions, hence, u space is 6-dimen-
sional.

In future we use vector notation for the sake of convenience and set

X = (xs Vs Z), b= (pxs Dy, pz)
The volume element in 4 space is denoted by

dxdp = dxdydzdp.dp,dp,. (1.3)
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Px

Fig. 2

1.3 ENSEMBLE OF ALMOST INDEPENDENT PARTICLES

Consider N simple harmonic oscillators, as described in the preceding
section, and assume that the oscillators are not all independent but can
transfer energy through very weak interactions. These interactions are

assumed to be so weak that the total energy may be written as the sum
of the individual energies

E=eV4e? 4. feM (14)

where e is the energy of the i-th oscillator.

Now consider a phase space spanned by x1?, x@ ..., xN)_p(1 p@ ...
p‘M. A point in this space defines a state of all the oscillators. We shall
call this phase space of the entire system [" space.

A point in " space moves with time along an orbit obeying the rule
of mechanics. If all of the oscillators are independent, then each
oscillator moves along the ellipse in Fig. 1 with a constant energy in
each u space. If interactions are present, however small, the quantity
e is no longer a constant but is a function of time, and the orbit in x space
deviates from an ellipse (Fig. 3).




6 1 CLASSICAL STATISTICAL MECHANICS OF SYSTEMS

Let us now put N points representing all of the oscillators in one g space
and let the number of points in an infinitesimal volume dxdp at a certain
time be n. The quantity n/N is considered to be the probability of
occurrence of a state in which one oscillator is in the volume dxdp. Our
task is to determine this probability.

We have used simple harmonic oscillators in the above example, but
the situation is the same for a system of free particles. In example 2 of the
preceding section, I" space is 6 N-dimensional consisting of x> and p*,
wherei=1, 2, ---, N and N is the total number of particles. Our problem
is to find the probability of the occurrence of that state in which one
particle is in an infinitesimal volume dxdp in y space. Again, we assume
that there are no interactions among the particles other than collisions.

Ergodic Hypothesis

In the previous models, the ensemble of simple harmonic oscillators
and the ensemble of free particles, we assumed that the total energy E
was given. However, a system is usually exchanging energy with its
surroundings, and therefore it would be appropriate to assume that the
energy of the system lies within a small region about E. Hence we will
assume that the energy of the system is between E and E+ AE. There-
fore the representative point in I" space undergoes motion in the region

E é H(‘Ih‘lz."',qf,PbPz,“',pf) é E+AE,

where f is the degree of freedom, ¢y, g2,--*,45, p1, P2,---,py are the gen-
eralized coordinates and momenta, and H is the Hamiltonian.

We assume that the motion of the point in I” space covers the above
region uniformly. More precisely, the probability that the representative
point is found in a specified volume is independent of the position of that
volume. This is a very fundamental assumption in statistical mechanics
and is called the ergodic hypothesis.

There are many mathematical problems involved in the ergodic hypo-
thesis, but we will not go into these in detail. This hypothesis is true not
only for the almost independent particles mentioned above, but also for
the total /" space for a general system in which particles are interacting
with each other.

Distribution of Maximum Probabilities

Now, returning to simple harmonic oscillators, we divide y space for
one simple harmonic oscillator into small equal sections of size a. Re-
garding the magnitude of a; classically it is arbitrary, but in quantum
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mechanical analysis it is appropriate to choose a equal to #, Planck’s
constant, in the light of the uncertainty relation dx-4dp=h. However,
since the final result is independent of the magnitude of a, we shall
merely assume it to be reasonably small. Now, we divide x4 space into
numbered boxes of size a. Let the energy of each box be e}, e;, €3, ---.
We do the same for N oscillators, and therefore the volume of the boxes
in I’ space corresponding to this division is obviously a¥. According to
the ergodic hypothesis, in the part of I" space between E and E+ 4E, the
probability that the representative point is found in any one of the boxes
is equal. Now assume, that among N oscillators, #; oscillators are in the
first box, n, in the second and »; in the i-th box. The number of such
distributions, according to permutation theory, is
N!

P = W, (L.5)
and the volume in /" space corresponding to it is PaV, That is, the prob-
ability of a given distribution ny,ny, ---, n;, ---occurring is proportional
to P.

We assume that P attains its maximum value at thermal equilibrium,
i.e., the most probable P is realized at thermal equilibrium. Let us now
determine #,’s so that P is maximized. First take the natural logarithm
of P:

InP=InN! - }; In n;!. (1.6)
According to Stirling’s formula, we know that for a large positive
integer M
In M! ~ M(In M—1) 1.7
and therefore, we have
InP=N(InN-1)— X n(lnn—1)
=NInN- X nlinn,.
To maximize P, we set
dln P=— ¥(nn + )dn; = 0. (1.8)

However, the dn,’s are not all independent, but are subject to the con-
straints:

onm=N S0 =0 (1.9)

and
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Yen =E S eon; = 0. (1.10)
It is convenient to use the Lagrange multiplier method to solve such a
problem. The operation —(1.8)+(1.9) xa+(1.10)x 3 yields
2 (nn; + a + Be)on; = 0. (1.11)
In Eq. (1.11), we may treat the dn,’s as if they are independent, and there-
fore we obtain
Inn + a+ fBe; =0,

N
n; = _e"ﬁﬂr. 1.12
i (1.12)
The quantities 8 and f can be determined using Eqgs. (1.9) and (1.10),
namely

f= X eba (1.13)

and

E= 73 eebe (1.14)

~| =

The Physical Meaning of 8 and

To determine the physical meaning of 3, we shall consider 2 ensembles,
A and B, consisting of different types of oscillators, and assume that
these 2 systems can exchange energy freely. The number of oscillators in
A is N4 and there are Ny oscillators in B. Let the number of oscillators
in A of energies e;, e;, --- be ny, ny, -+, and those in B of energies ¢,’,
ey, --- be ny’, ny’, ---. The number of such distributions is

N,! Np!

= Tnglm Ty o (1.15)

which is to be maximized under the following conditions:
2n;= Ny,
2 ni' = Np,
X en; + X e'n’ = E.

As before, we obtain
Y (Inn + a+ Be)on; + L(nn/ + o’ + Be;Yon/ = 0.

Hence
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Jp— & —Be: g Ng —Be/ .
n; fAe Be:, n, fBe (1.16)
From these equations we see that the constant 3 is common to both
systems when they can exchange energy. According to thermodynamics,
the temperatures of two systems are equal if they exchange energy and are
in thermal equilibrium. Therefore the quantity 3 corresponds to tempera-
ture in thermodynamics.

To look at this situation more closely, let us return to Eqgs. (1.13)
and (1.14) for a single system and examine how In f varies from § to

5+ db: ,
dinf) = - Bee

Now compare this equation with an equation in thermodynamics of the
same form. Let the Helmholtz free energy and the absolute temperature
be F and T, respectively. Then we have for constant volume V,

g = — @. (1.17)

F\_ _ dT
d(T)_ % (1.18)
Equations (1.17) and (1.18) imply that Soc1/T. Hence, we set
B8 =1/kgT (1.19)

where &y is the Boltzmann constant, the value of which will be deter-
mined later. We also know that the Helmholtz free energy is given by

F= —NkgTIn f. (1.20)
By substituting Eq. (1.19) into Eq. (1.12), we obtain

n = L}’—e“'/"nT (1.21)

This is the Maxwell-Boltzmann distribution law.

So far, we have considered only simple harmonic oscillators, but this
distribution law, Eq. (1.21), holds true in general for any system consisting
of almost free particles.

Application to an Ideal Gas

Let us apply the above distribution law to an ideal gas. Suppose there
are N identical molecules in a volume V, with no forces acting between
them. We assume that internal motions such as rotation and vibration
can be neglected. Therefore, the u space to be considered is 6-dimension-
al, (x, y, z, py, Py, P.). The kinetic energy of a single molecule is
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@2+ pt+ 05

€= 2m

From Eq. (1.21), the average number of molecules in a volume a in
L space is

_ N _p,2+py2+p=2)
n= ~7exp( ) (1.22)

From Eq. (1.13), we have

2
ex p( PE+ P+ ps )dxdydzdp,dpydpz

2kaT
- V(27rmkaTl3f, (1.23)
4 .
where we have used the reaction
S x\172
["eerax = (;) (@ > 0). (1.24)
Hence, the Helmholtz free energy is given by
F= —Nkg Tln [%(ankBT)f‘/z]. (1.25)
The pressure p is given by the thermodynamic relation
_ _ (9F\ _ NkgT.
- - ), =

This is the equation of state for an ideal gas, and if we take N as Ny,
Avogadro’s number, we obtain pV= NykgT. Comparing this equation
with the thermodynamic relation p¥'=RT, we conclude that

kg = Nlio — 1.380x 10-16 erg/deg. .27

1.4 CANONICAL ENSEMBLE

We assumed in the preceding section that the interaction between
particles is very weak and that the total energy is the sum of the energies
of the individual particles. This assumption is true for the kinetic energy
but fails for the potential energy. We now discuss a general method which
is applicable to such a system. The system considered in the preceding
section is, of course, included as a special case.

Consider a system consisting of many particles (e.g., a gas in a box,



