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Preface

This book is an introduction to the quantitative treatment of differential equa-
tions that arise from modeling physical phenomena in the area of chemical
engineering. It evolved from a set of notes developed for courses taught at
Virginia Polytechnic Institue and State University.

An engineer working on a mathematical project is typically not interested
in sophisticated theoretical treatments, but rather in the solution of a model and
the physical insight that the solution can give. A recent and important tool in
regard to this objective is mathematical software—preprogrammed, reliable
computer subroutines for solving mathematical problems. Since numerical meth-
ods are not infallible, a ‘‘black-box” approach of using these subroutines can be
dangerous. To utilize software effectively, one must be aware of its capabilities
and especially its limitations. This implies that the user must have at least an
intuitive understanding of how the software is designed and implemented. Thus,
although the subjects covered in this book are the same as in other texts, the
treatment is different in that it emphasizes the methods implemented in com-
mercial software. The aim is to provide an understanding of how the subroutines
work in order to help the engineer gain maximum benefit from them.

This book outlines numerical techniques for differential equations that either
illustrate a computational property of interest or are the underlying methods of
a computer software package. The intent is to provide the reader with sufficient
background to effectively utilize mathematical software. The reader is assumed
to have a basic knowledge of mathematics, and results that require extensive
mathematical literacy are stated with proper references. Those who desire to
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vili Preface

delve deeper into a particular subject can then follow the leads given in the
references and bibliographies.

Each chapter is provided with examples that further elaborate on the text.
Problems at the end of each chapter are aimed at mimicking industrial mathe-
matics projects and, when possible, are extensions of the examples in the text.
These problems have been grouped into two classes:

Class 1: Problems that illustrate direct numerical application of the formulas
in the text.

Class 2: Problems that should be solved with software of the type described
in the text (designated by an asterisk after the problem number).

The level of this book is introductory, although the latest techniques are
presented. The book can serve as a text for a senior or first-year graduate level
course. At Virginia Polytechnic Institute and State University I have successfully
used this material for a two-quarter sequence of first-year graduate courses. In
the first quarter ordinary differential equations, Chapter 1 to 3, are covered.
The second quarter examines partial differential equations using Chapters 4 and
5.

I gratefully acknowledge the following individuals who have either directly
or indirectly contributed to this book: Kenneth Denison, Julio Diaz, Peter Mer-
cure, Kathleen Richter, Peter Rony, Layne Watson, and John Yamanis. I am
especially indebted to Graeme Fairweather who read the manuscript and pro-
vided many helpful suggestions for its improvement. I also thank the Department
of Chemical Engineering at Virginia Polytechnic Institute and State University
for its support, and I apologize to the many graduate students who suffered
through the early drafts as course texts. Last, and most of all, my sincerest
thanks go to Jan Chance for typing the manuscript in her usual flawless form.

I dedicate this book to my wife, who uncomplainingly gave up a portion of
her life for its completion.

Mark E. Davis
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Initial-Value Problems for Ordinary
Differential Equations

INTRODUCTION

The goal of this book is to expose the reader to modern computational tools for
solving differential equation models that arise in chemical engineering, e.g.,
diffusion-reaction, mass-heat transfer, and fluid flow. The emphasis is placed
on the understanding and proper use of software packages. In each chapter we
outline numerical techniques that either illustrate a computational property of
interest or are the underlying methods of a computer package. At the close of
each chapter a survey of computer packages is accompanied by examples of
their use.

BACKGROUND

Many problems in engineering and science can be formulated in terms of dif-
ferential equations. A differential equation is an equation involving a relation
between an unknown function and one or more of its derivatives. Equations
involving derivatives of only one independent variable are called ordinary dif-
ferential equations and may be classified as either initial-value problems (I'VP)
or boundary-value problems (BVP). Examples of the two types are:

IVP: y' = —yx (1.1a)
y(0) = 2, y'(0) =1 (1.1b)
BVP: y' = —ywx (1.2a)
y0 =2, y@)=1 (1.2b)
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2 Initial-Value Problems for Ordinary Differential Equations

where the prime denotes differentiation with respect to x. The distinction be-
tween the two classifications lies in the location where the extra conditions [Eqgs.
(1.1b) and (1.2b)] are specified. For an IVP, the conditions are given at the
same value of x, whereas in the case of the BVP, they are prescribed at two
different values of x.

Since there are relatively few differential equations arising from practical
problems for which analytical solutions are known, one must resort to numerical
methods. In this situation it turns out that the numerical methods for each type
of problem, IVP or BVP, are quite different and require separate treatment. In
this chapter we discuss IVPs, leaving BVPs to Chapters 2 and 3.

Consider the problem of solving the mth-order differential equation

y(M) = f(x’ Y yl) y": ey y(m—l)) 1.3
with initial conditions
y(¥o) = Yo

y'(x0) = ¥o

Yo (xg) = y§ v

where fis a known function and y,, 5, . . . , y§" " are constants. It is customary
to rewrite (1.3) as an equivalent system of m first-order equations. To do so,
we define a new set of dependent variables y,(x), y,(x), . . . , y.(x) by
Yi =Yy
2=y
y3 =" (1.4)
Ym = yeb
and transform (1.3) into
Yi= Y2 =[x yu Yo o oo Ym)
Y3 =1; = flx Y1 Yo oo s V) (1.5)

yr,n = f(x1 Yio Y2 - - -, ym) = fm(x: Yo Yo - - o ym)
with
yi(x0) = ¥o
y2(%0) = ¥o

(m—1)

Ym{X0) = Yo



Explicit Methods 3

In vector notation (1.5) becomes

y'(x) = f(x, y) (1.6)
y(x) = Yo
where
yi(x) filx, y) Yo
y(x) = YZ(X) , f(x, y) = fz(x" y) ; Yo = }’6
YmlX) falx, ¥) Yy

It is easy to see that (1.6) can represent either an mth-order differential
equation, a system of equations of mixed order but with total order of m, or a
system of m first-order equations. In general, subroutines for solving IVPs as-
sume that the problem is in the form (1.6). In order to simplify the analysis, we
begin by examining a single first-order IVP, after which we extend the discussion
to include systems of the form (1.6).

Consider the initial-value problem

y' o= fxy), yxo) = yo 1.7

We assume that df/dy is continuous on the strip xy =< x =< x,, thus guaranteeing
that (1.7) possesses a unique solution [1]. If y(x) is the exact solution to (1.7),
its graph is a curve in the xy-plane passing through the point (x,, y,). A discrete
numerical solution of (1.7) is defined to be a set of points [(x;, u;)]V,, where
uy; = yo and each point (x;, u;) is an approximation to the corresponding point
{(x;, y(x;)) on the solution curve. Note that the numerical solution is only a set
of points, and nothing is said about values between the points. In the remainder
of this chapter we describe various methods for obtaining a numerical solution

[(xi, )] o

EXPLICIT METHODS

We again consider (1.7) as the model differential equation and begin by dividing
the interval [x,, x»] into N equally spaced subintervals such that
v — %o

N (1.8)
X; = xo + ih, i=20,1,2,...,N

h =

The parameter h is called the step-size and does not necessarily have to be
uniform over the interval. (Variabie step-sizes are considered later.)



4 Initial-Value Problems for Ordinary Differential Equations
If y(x) is the exact solution of (1.7), then by expanding y(x) about the

point x; using Taylor’s theorem with remainder we obtain:

y(xiv1) = y(x) + (i — x)y'(x:)

xi - xi 2 ”
+ '(;12”,—‘)‘ y'(&), X SE <X 1.9

The substitution of (1.7) into (1.9) gives
R
Y(xie1) = y(x;) + hf(x;, y(x)) + E,’f (&, (&) (1.10)
The simplest numerical method is obtained by truncating (1.10) after the second

term. Thus with u; = y(x,),

ui+1=ui+hf(xi,ui)’ i=031""’N—1’ (111)

Up = Yo

This method is called the Euler method.

By assuming that the value of u; is exact, we find that the application of
(1.11) to compute u;, , creates an error in the value of u;, ,. This error is called
the local truncation error, ¢;, ;. Define the local solution, z(x), by

Z'(x) = f(x’ Z)’ Z(X,-) = U 1.12)

An expression for the local truncation error, ¢;,, = z(x;,,) — u;,,, can be
obtained by comparing the formula for u;, , with the Taylor’s series expansion
of the local solution about the point x;. Since

2
25, + ) = 2() + W, 2(x)) + o 2 @)
or
h -
z(x; + h) = w; + hf(x; w) + Ez”(gi): X, < < x4, 1.13)
it follows that
h
€iv1 = 5 2"(&) = O(hz) (1.14)

The notation O( ) denotes terms of order (), i.e., f(h) = O(hL)if |f(h)| < AR
as h — 0, where A and !/ are constants [1]. The global error is defined as
Siv1 = ¥(Xis1) — Wiy (1.15)

and is thus the difference between the true solution and the numerical solution
at x = x;,;. Notice the distinction between e, and &,,,. The relationships
between ¢;,, and &, ; will be discussed later in the chapter.



Explicit Methods 5
We say that a method is pth-order accurate if

e,y = O(hP+1) (1.16)

and from (1.14) and (1.16) the Euler method is first-order accurate. From the
previous discussions one can see that the local truncation error in each step can
be made as small as one wishes provided the step-size is chosen sufficiently small.
The Euler method is explicit since the function f is evaluated with known
information (i.e., at the left-hand side of the subinterval). The method is pictured
in Figure 1.1. The question now arises as to whether the Euler method is able
to provide an accurate approximation to (1.7). To partially answer this question,
we consider Example 1, which illustrates the properties of the Euler method.

EXAMPLE 1

Kehoe and Butt [2] have studied the kinetics of benzene hydrogenation on a
supported Ni/kieselguhr catalyst. In the presence of a large excess of hydrogen,

the reaction is pseudo-first-order at temperatures below 200°C with the rate
given by

-Q - E
—r = Py koK,T exp [(———QE—T—“—)] Cy mole/(g of catalyst-s)
8

where

R, = gas constant, 1.987 cal/(mole-K)
-Q — E, = 2700 cal/mole
Py, = hydrogen partial pressure (torr)
ko = 4.22 mole/(gcat-s-torr)
Ky = 2.63 x 107° cm®/(mole-K)
T = absolute temperature (K)
Cp = concentration of benzene (mole/cm?).

Price and Butt (3] studied this reaction in a tubular reactor. If the reactor is
assumed to be isothermal, we can calculate the dimensionless concentration
profile of benzene in their reactor given plug flow operation in the absence of
inter- and intraphase gradients. Using a typical run,

Py, = 685 torr

2

it

Pr
0

density of the reactor bed, 1.2 gcat/cm?
contact time, 0.226 s
= 150°C
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SLOPE = t(xg.yo) SLOPE =f{x,u)

SLOPE =  (x5,u5)

L 4

Mo e e e e = - —

M o e e — o ——
M e e o o —— -

FIGURE 1.1 Euler method.
SOLUTION

Define

C§ = feed concentration of benzene (mole/cm?)
z = axial reactor coordinate (cm)

L = reactor length
y = dimensionless concentration of benzene (Cg/C3)
x = dimensionless axial coordinate (z/L).

The one-dimensional steady-state material balance for the reactor that expresses
the fact that the change in the axial convection of benzene is equal to the amount

converted by reaction is
d (Cyg
a(ﬁ)”’

CB=C3 atx=0

with

Since 6 is constant,

d
2 o 5 0Py koKoT exp [

o ("Q _Ea)]y

R,T
Let

(__Q — En)
¢ = py0Py,koK,T exp [__Rg?_



Explicit Methods 7

Using the data provided, we have & = 21.6. Therefore, the material balance
equation becomes

3
— = —-21.6
dx y

with
y=1at x=0

and analytical solution

y = exp (—21.6x)
Now we solve the material balance equation using the Euler method [Eq. (1.11)]:
Ui = u; — 21.6hu,, i=0,1,2,...,N -1
where
1
h=—
N

Table 1.1 shows the generated results. Notice that for N = 10 the differ-
ences between the analytical solution and the numerical approximation increase
with x. In a problem where the analytical solution decreases with increasing
values of the independent variable, a numerical method is unstable if the global
error grows with increasing values of the independent variable (for a rigorous
definition of stability, see [4]). Therefore, for this problem the Euler method is
unstable when N = 10. For N = 20 the global error decreases with x, but the
solution oscillates in sign. If the error decreases with increasing x, the method
is said to be stable. Thus with N = 20 the Euler method is stable (for this
problem), but the solution contains oscillations. For all N > 20, the method is
stable and produces no oscillations in the solution.

From a practical standpoint, the “‘effective” reaction zone would be ap-
proximately 0 = x =< 0.2. If the reactor length is reduced to 0.2L, then a more
realistic problem is produced. The material balance equation becomes

dy
dx

I

—4.32y

y=1 at x=90

Results for the “short” reactor are shown in Table 1.2. As with Table 1.1, we
see that a large number of steps are required to achieve a “‘good’” approximation
to the analytical solution. An explanation of the observed behavior is provided
in the next section.

Physically, the solutions are easily rationalized. Since benzene is a reactant,
thus being converted to products as the fluid progresses toward the reactor outlet
(x = 1), y should decrease with x. Also, a longer reactor would allow for greater
conversion, i.e., smaller y values at x = 1.
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TABLE 1.1 Results of Euler Method on :_xy = —21.6y,y=1atx =0

Analytical

x Solution¥ N =10 N =20 N = 100 N = 8000
0.00 1.00000 1.0000 1.00000 1.00000 1.00000

0.05 0.33960 — —0.80000(— 1) 0.29620 0.33910

0.10 0.11533 —-1.1600 0.64000( —2) 0.87733(—-1) 0.11499

0.15 0.39164( - 1) — ~0.51200(—3)  0.25986(—1)  0.38993(~1)
0.20 0.13300(—1) 1.3456 0.40960( —4) 0.76970( - 2) 0.13222(-1)
0.25 0.45166( —2) — —0.32768(—95) 0.22798(—2) 0.44837(-2)
0.30  0.15338(-2)  —1.5609 0.26214(—6)  0.67528(—3)  0.15204(-2)
0.35 0.52088(—3) — =0.20972(-7) 0.20000( - 3) 0.51558(—3)
0.40 0.17689( ~3) 1.8106 0.16777(—8) 0.59244(—4) 0.17483(~3)
0.45 0.60070(—4) —_ —0.13422(-9) 0.17548(-4) 0.59286( —4)
0.50 0.20400(—4) -2.1003 0.10737(-10) 0.51976(-5) 0.20104(—4)
0.55  0.69276(—5) — —0.85899(—-12)  0.15395(=5)  0.68172(-5)
0.60 0.23526(—5) 2.4364 0.68719(—13) 0.45600(—6) 0.23117(-5)
0.65  0.79892(-—6) _— ~0.54976(—14)  0.13507(—6)  0.78390(—6)
0.70 0.27131(—6)  —2.8262 0.43980(—15)  0.40006(—7)  0.26582(~6)
0.75 0.92136(—7) — —0.35184(—16)  0.11850(—7)  0.90139(—7)
0.80  0.31289(-7) 3.2784 0.28147(—17)  0.35098(-8)  0.30566( ~7)
0.85 0.10626(—7) — —0.22518(—18) 0.10396( — 8) 0.10365(—-7)
0.90 0.36084( - 8) —3.8030 0.18014(—19) 0.30793(-9) 0.35148( - 8)
0.95 0.12254(—8) — —0.14412(-20) 0.91207(-10) 0.11919(-8)
1.00 0.41614(—9) 4.4114 0.11529(-21) 0.27015(—10) 0.40416(-9)

+ (—3) denotes 1.0 x 10-3,

STABILITY

In Example 1 it was seen that for some choices of the step-size, the approximate
solution was unstable, or stable with oscillations. To see why this happens, we
will examine the question of stability using the test equation

dy _
dx 1.17)
¥(0) = yo
where \ is a complex constant. Application of the Euler method to (1.17) gives
U, = U; + Ny (1.18)
or
U, =0 + )y, =Q +~AN)2u_ = .. =0+ -ty (119
The analytical solution of (1.17) is
Y(xis1) = yoertie1 = yeel+hax (1.20)

Comparing (1.20) with (1.19) shows that the application of Euler’s method to
(1.17) is equivalent to using the expression (1 + h\) as an approximation for



