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°RE

Like its predecessor, the Third Edition of Calculus with
Analytic Geometry contains all the topics that normally
constitute a course in calculus of one and several varia-
bles. It is suitable for sequences taught in three semesters
or in four or five quarters. In the three-semester case, the
first semester will usually include the introductory chap-
ter (Chapter 1), the three chapters on limits and deriva-
tives (Chapters 2—4), and the initial chapter on integrals

(Chapter 5). The second semester would then include the

rest of the discussion of integration (Chapters 6-8) and

some combination of the chapters on series (Chapter 9),

conic sections (Chapter 10), and the introduction to vec-

tors and vector-valued functions (Chapters 11 and 12).

The third semester would include the remainder of those

chapters, along with the material on calculus of several

variables (Chapters 13 and 14) and Chapter 15, which
includes the theorems of Green and Stokes as well as the

Divergence Theorem. Finally, an optional chapter on dif-

ferential equations can be covered in whole or in part

during the second or third semester.

The revisions in the Third Edition have been made with
the benefit of comments from many users of the previous
editions, as well as from our experience in teaching from
those editions. The most noteworthy changes are the
following:
® Cumulative Review Exercises now conclude Chapters

3 through 15, thereby providing continuous reinforce-

ment of major concepts from the preceding chapters.

® Riemann sums, fundamental to applications of the in-
tegral, are now presented along with the initial presen-
tation of the integral, in Chapter 5.

® Derivations of formulas for applications of the integral
have been altered so as to be more intuitive.

* The complete single variable discussion of area is now
placed in Chapter 5, in order to give added emphasis to
the concept.

® We have used an algorithmic approach for the bisection
and Newton-Raphson methods, because of the poten-
tial use of calculators and computers in calculus. In
addition, we have increased the number and variety of
exercises for which the Newton-Raphson method is ap-
propriate.

® We have streamlined the introductory discussion of
Taylor’s Theorem at the outset of Chapter 9, thereby
facilitating progress toward the topics of sequences and
series.

e Finally, a selection of computer-drawn figures appears
in Chapter 13 to help students visualize surfaces that
are not easily drawn by hand.

Although we develop the material in the order that we
have found pedagogically most effective, instructors will
have considerable flexibility in choosing topics. Chapter
1 (which includes a section on trigonometry, so that trig-
onometric functions can serve as examples throughout
the book) is preliminary and can be covered quickly if the
student’s preparation is sufficient. With a little care, ap-
plications of the integral (Chapter 8) can be discussed
before techniques of integration (Chapter 7). Sequences
and series (Chapter 9) can be studied any time after
Chapter 8, conic sections (Chapter 10) any time after
Chapter 4, and differential equations (Chapter 16) any
time after Chapter 7.

Whenever possible, we use geometric and intuitive mo-
tivation to introduce concepts and results, so that stu-
dents may readily absorb the carefully worded definitions
and theorems that follow. The topical development, in
which we employ numerous worked examples and almost
900 illustrations, aims for clarity and precision without
overburdening the reader with formalism. In keeping
with this goal, we have proved most theorems of first-year
calculus in the main body of the text but have placed the
more difficult proofs in the Appendix. In the chapters on
calculus of several variables we have proved selected
theorems that aid comprehension of the material.

Exercises appear both at the ends of sections and, for
review, at the end of each chapter. Each set begins with a
full complement of routine exercises to provide practice
in using the ideas and methods presented in the text.
These are followed by applied problems and by other
exercises of a more challenging nature (identified with an
asterisk). To supplement the usual problems from physics
and engineering, we have included many from business,
economics, biology, chemistry, and other disciplines, as
well as a smaller number of exercises suitable for solution
on a calculator (indicated by the symbol @). In addition,
Chapters 3-15 each end with a collection of cumulative
review exercises, which are intended to reinforce the
main ideas of the previous chapters. In the interest of
accuracy every exercise has been completely worked by
each of the authors. Answers to odd-numbered exercises
(except those requiring longer explanations) appear at
the back of the book.
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Throughout the book, statements of definitions, theo-
rems, lemmas, and corollaries, as well as important for-
mulas, are highlighted with tints for easy identification.
Numbering is consecutive throughout each chapter for
definitions and theorems, and consecutive within each
section for examples and formulas. We use the symbol Il
to signal the end of a proof and [] for the end of the
solution to an example.

Lists of Key Terms and Expressions, Key Formulas,
and Key Theorems appear at the end of each chapter. On
the endpapers we have assembled important formulas
and results that the student will want to have handy, both
for course review and for reference in later studies. Pro-
nunciation of difficult terms and names is shown in foot-
notes on the pages where they first appear.

We are very grateful to many people who have helped
us in a variety of ways as we prepared the various editions
of this book. Our thanks go to reviewers Daniel D. An-
derson (University of Iowa), Raymond J. Cannon, Jr.
(Baylor University), Douglas Crawford (College of San
Mateo), Arthur Crummer (University of Florida), Robert
M. Dieffenbach (Miami University, Ohio), J. R. Dorroh
(Louisiana State University), Daniel Drucker (Wayne
State University), Bruce Edwards (University of Florida),
Murray Eisenberg (University of Massachusetts), Charles
H. Franke (Seton Hall University), Robert Gold (Ohio
State University at Columbus), Jack Goldberg (University
of Michigan), Stuart Goldenberg (California Polytechnic
University, San Luis Obispo), Robert B. Hughes (Boise
State University), Richard Koch (University of Oregon),
J. D. Konhauser (Macalester College), Theodore Laetsch
(University of Arizona), Peter Lindstrom (Genessee
Community College), David J. Lutzer (Miami University,
Ohio), Hugh B. Maynard (University of Texas at San An-
tonio), Peter Nyikos (University of Southern California),
Jack Robertson (Washington State University), M. M.
Subramaniam (Pennsylvania State University, Delaware
Campus), John Thorpe (State University of New York at
Stonybrook), Mark S. Ubelhor (Scott Community Col-
lege), Abraham Weinstein (Nassau Community College),
and Paul Zorn (St. Olaf College). Many of our colleagues
at the University of Maryland have made contributions
to the original writing of this book and to the revisions;
we wish to express our appreciation to William Adams,
Stuart Antman, Douglas Arnold, Joseph Auslander,
Kenneth Berg, Ellen Correl, Jerome Dancis, Gertrude
Ehrlich, Craig Evans, Seymour Goldberg, Jacob Gold-
haber, Paul Green, Frances Gulick, Bert Hubbard,
James Hummel, Nelson Markley, James Owings, Jona-

than Rosenberg, Karl Stellmacher, C. Robert Warner,
Peter Wolfe, James Yorke, and Mishael Zedek. In addi-
tion, we are grateful for comments and suggestions from
Bruce L. Aborn (Bentley College), Steven Agronsky
(California Polytechnic University, San Luis Obispo),
Robert Baer (Miami University), David W. Bange (Uni-
versity of Wisconsin, LaCrosse), Don Blevins (Trinity
College), Thomas T. Bowman (University of Florida), Art
Bukowski (University of Alaska at Anchorage), Martin
Buntinas (Loyola University), Lawrence O. Cannon
(Utah State University), Ray Cannon (Stetson University),
Elizabeth B. Chang (Hood College), F. Lee Cook (Uni-
versity of Alabama, Huntsville), Craig Cordes (Louisiana
State University), Brad Crain (Portland State University),
Hall Crannell (Catholic University of America), John S.
Cross (University of Northern Iowa), Randall Dahlberg
(Seton Hall University), Leroy Damewood (Eastern Ore-
gon State College), Lynn K. Davis (University of Cincin-
nati), Loyal Farmer (Cameron University), Gerald Farrell
(California Polytechnic University, San Luis Obispo), Bill
Finch (University of Florida), Gregory D. Foley (North
Harris County College), Robert Fontenot (Whitman Col-
lege), Juan A. Gatica (University of lowa), Donald Gray
(Iowa Western Community College), Harvey C. Green-
wald (California Polytechnic University, San Luis Ob-
ispo), Charles Groetsch (University of Cincinnati), Edwin
Halfar (University of Nebraska), Leona Henry (Mercy
College), Stephen R. Hilding (Gustavus Adolphus Col-
lege), Tim Hodges (University of Cincinnati), Dean W.
Hooner (Alfred University), Brindell Horelick (Univer-
sity of Maryland, Baltimore County), Shirley Huffman
(Southwest Missouri State University), Ronald Infante
(Seton Hall University), Cassius T. Ionescu Tulcea
(Northwestern University) Bernice Kastner (Montgomery
College), Dan Kemp (South Dakota State University),
John T. Kemper (College of St. Thomas), Frank Kost
(State University of New York at Oneonta), Charles Lan-
ski (University of Southern California), David Lehmann
(Southwest Missouri State), Verlyn Lindell (Augustana
College), Lowell Lynde (University of Arkansas), Danny
W. McCarthy (Tulane University), Jim McKinney (Cali-
fornia State Polytechnic University, Pomona), Jerome H.
Manheim (California State University, Long Beach), Bill
Marion (Valparaiso University), Frank Mathis (Baylor
University), John Moriarty (University of Cincinnati),
Roger H. Moritz (Alfred University), Kent Morrison
(California Polytechnic State University, San Luis
Obispo), James M. Nare (University of Tennessee, Chat-
tanooga), Michael J. Nowak (United States International
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TO THE READER

When you begin to study calculus, you will find that you
have encountered many of its concepts and techniques
before. Calculus makes extensive use of plane geometry
and algebra, two branches of mathematics with which you
are already familiar. However, added to these is a third
ingredient, which may be new to you: the notion of limit
and of limiting processes. From the idea of limit arise the
two principal concepts that form the nucleus of calculus;
these are the derivative and the integral.

The derivative can be thought of as a rate of change,
and this interpretation has many applications. For exam-
ple, we may use the derivative to find the velocity of an
object, such as a rocket, or to determine the maximum
and minimum values of a function. In fact, the derivative
provides so much information about the behavior of func-
tions that it greatly simplifies graphing them. Because of
its broad applicability, the derivative is as important in
such disciplines as physics, engineering, economics, and
biology as it is in pure mathematics.

The definition of the integral is motivated by the famil-
iar notion of area. Although the methods of plane geom-
etry enable us to calculate the areas of polygons, they do
not provide ways of finding the areas of plane regions
whose boundaries are curves other than circles. By means
of the integral we can find the areas of many such regions.
We will also use it to calculate volumes, centers of gravity,
lengths of curves, work, and hydrostatic force.

The derivative and the integral have found many di-
verse uses. The following list, taken from the examples
and exercises in this book, illustrates the variety of fields
in which these powerful concepts are employed.

Section

Windpipe pressure during a cough 4.5
Cost of insulating an attic floor 4.5
Blood resistance in vascular branching 4.5
Surface area of a cell in a beehive 4.5
Buffon’s needle problem 5.4
Growth of a paramecium population 6.3
Magnitude of an earthquake 6.4
Dating of a lunar rock sample 6.5
Amount of an anesthetic needed during an

operation 6.5

Section

Mass of binary stars 71
Pareto’s Law of distribution of income 7.6
Volume of the great pyramid of Cheops 8.1
Force of water on an earth-filled dam 8.8
Harmonics of a stringed instrument 9.2
Multiplier effect in economics 9.4
Location of the source of a sound 10.3
Rated speed of a banked curve 12.5
Kepler’s Laws of planetary motion 12.7
Escape velocity from the earth’s gravitational

field 12.7
Analysis of a rainbow 13.3
Effect of taxation on production of a

commodity 13.3
Law of conservation of energy 15.3
Electric field produced by a charged telephone

wire 15.6
Terminal speed of a falling object 16.4
Motion of a spring 16.7

The concepts basic to calculus can be traced, in uncrys-
tallized form, to the time of the ancient Greeks. How-
ever, it was only in the sixteenth and early seventeenth
centuries that mathematicians developed refined tech-
niques for determining tangents to curves and areas of
plane regions. These mathematicians and their ingenious
techniques set the stage for Isaac Newton (1642-1727)
and Gottfried Leibniz (1646-1716), who are usually cred-
ited with the “invention” of calculus because they codi-
fied the techniques of calculus and put them into a general
setting; moreover, they recognized the importance of the
fact that finding derivatives and finding integrals are in-
verse processes.

During the next 150 years calculus matured bit by bit,
and by the middle of the nineteenth century it had be-
come, mathematically, much as we know it today. Thus
the definitions and theorems presented in this book were
all known a century ago. What is newer is the great diver-
sity of applications, with which we will try to acquaint you
throughout the book.

Robert Ellis + Denny Gulick
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FUNCTIONS

1.1

In this chapter we will review the basic properties of real numbers, introduce the
concept of function, and discuss different types of functions. If you are already
familiar with most of the definitions and concepts given, we suggest that you read
Chapter 1 quickly and proceed to Chapter 2.

THE REAL NUMBERS

Types of Real Numbers
and the Real Number
Line

Real numbers, their properties, and their relationships are basic to calculus.
Therefore we begin with a description of some important properties of real
numbers.

The best known real numbers are the integers:
0’ ila i29 __t3>~~-

From the integers we derive the rational numbers. These are the real numbers that
can be written in the form p/q, where p and g are integers and g # 0. Thus 28, — 17,
and — 1.41 (which is equal to — &%) are rational numbers. Any real number that
is not rational is called an irrational number. Examples of irrational numbers are
n and /2. (See Exercise 84 at the end of this section for a proof that J2 is

irrational.)
Thereis an order < on the real numbers. If a # b, then eithera < bora > b.
Forexample,5 < 7and —1 > —2.If aisless than or equal to b, we write a < b. If

1



2 1 FUNCTIONS

a is greater than or equal to b, we write a > b. For example, x? > 0 for any real
number x. We say that a is pesitive if a > 0 and negative if a < 3. If a > 0, we say
that a is nonnegative.

The real numbers can be represented as points on a horizontal line in such a
way that if a < b, then the point on the line corresponding to the number a lies to
the left of the point on the line corresponding to the number b (Figure 1.1).

Negative numbers Positive numbers
1 1 !
T T T
0 a b
a<b

The real line

FIGURE 1.1

Such a line is called the real number line, or real line. We think of the real numbers
as points on the real line, and vice versa. Thus we say that the negative numbers lie
to the left of 0 and the positive numbers lie to the right of 0.

Intervals Certain sets of real numbers, called intervals, appear with great frequency in
calculus. They can be grouped into nine categories:

a b Name Notation Description

Open interval (@, b) Open interval (a,b) all x such thata<x <b
Closed interval (a,b] all x such thata<x<b
Half-open interval (a,b] all xsuch thata<x <b
Half-open interval [a,b) all x such thata < x<b
Open interval (a, ) all x such thata < x
Open interval (—o0,a) all x such that x < a
Closed interval [a, c©) all x such thata < x
Closed interval (—o0,a] all x such that x < a
The real line (= o0, 00) all real numbers

Half~open interval (a, b)

— R I D — Intervals of the form (a, b), [a, b], (a, b], and [a, b) are bounded intervals, and a

a b and b are the endpoints of each of these intervals. Figure 1.2 shows the four types

of bounded intervals. Intervals of the form (a, 00), (— 00, a), [a, ), (— 0, a], and

(— 00, c0) are unbounded intervals, and a is the endpoint of each of the first four

FIGURE 1.2 of these intervals. A number that is in an interval but is not an endpoint of the
interval is called an interior point of the interval.

Half-open interval {a, b)

Caution: The symbols oo and — oo used above are called “infinity”
and “minus infinity,” respectively. They do not represent numbers.

Notice that (b, b), (b, b], and [b, b) contain no numbers. More generally, (a, b),
(a, b], and [a, b) contain no numbers if b < a. Whenever we write (a, b), (a, b], or



Inequalities and Their
Properties

1.1 THE REAL NUMBERS 3

[a, b), we make the implicit assumption that a < b. Likewise, we write [a, b] only
when a < b.

Statements such asa < b, a < b, a > b, and a > b are called inequalities. We list
several basic laws for inequalities. In what follows a, b, ¢, and d are assumed to be
real numbers.

Trichotomy: Either a < b,ora > b, ora = b,

and only one of these holds for any given a and b. (1)
Transitivity: If a < b and b < ¢, then a < c. (2)
Additivity: If a <band ¢ <d,thena+ c < b + d. (3)

(4)
(5)

Replacing < by < and > by > in laws (2)(5) yields four new laws for
inequalities, which we will also find useful.

The word “trichotomy” in (1) means a threefold division. The trichotomy
law states that any two numbers a and b are related in exactly one of the three
ways listed in (1). For example, given the two numbers 3.1416 and 7, we have
either 3.1416 < 7, 3.1416 = =, or 3.1416 > n. (The last is actually correct.)

For simplicity of notation, two inequalities are sometimes combined. For
example, if @ < b and b < ¢, then we can writea < b < c.

Caution: The multiplication laws, (4) and (5), must be carefully
observed. To illustrate their use, we will present several examples. In
each, the problem is to “solve an inequality,” which means to find all real
numbers that satisfy the inequality.

Example 1 Solve the inequality 1/x < 3.

Solution First we observe that 0 cannot be a solution because division by 0 is
impossible. Next we multiply through by x to eliminate x from the denominator.
For positive x, (4) yields 1 < 3x or § < x. Thus the numbers in (4, o) constitute
one part of the solution of the given inequality. For negative x, (5) yields 1 > 3x,
or 3 > x. Since the last inequality is satisfied by all x < 0, a second part of the
solution consists of all x in (— oo, 0). Therefore the complete solution consists of
all numbers in the interval (— o0, 0) and all numbers in the interval 4, 0). O

When the solution of an inequality forms only one interval, we will write
only that interval as the solution. Moreover, if the solution of an inequality
consists of more than one interval, we will refer to the solution as the union of
these intervals. Thus the solution of the inequality 1/x < 3 in Example 1 consists
of the union of the intervals (— oo, 0) and (4, c0).
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Example 2 Solve the inequality —1 < —2x + 3 < 2.

Solution The given inequality is equivalent to the following pair of
inequalities:
—l< —2x+3 and —-2x+3<2
First subtracting 3 throughout, we find that
—4< —2x and —2x< -1

Then dividing throughout by —2 and reversing the inequality signs, we obtain
2 d >
> X an X 2 3

Thus the solution consists of all numbers x satisfying 1+ < x < 2, that is, the
interval [$,2). O

Since we performed the same algebraic manipulation on both inequalities
—1< —2x + 3and —2x + 3 < 2, we could have solved the original inequality

without splitting it up:
1< -2x+3<2
-4 < -2x< —1
2>x2>4

In solving most inequalities, we will need to find values of x for which a
certain expression in x is positive (or negative). We will need to be careful to
observe the negative multiplicativity rule (5) when we multiply negative numbers.

Example 3 Solve the inequality

(x—Dix-3) S

x+2 0

Solution  First we draw a diagram that shows the signs of the factors x — 1 and
x — 3 of the numerator and x + 2 of the denominator.

x—1 — = — - — — — — — - _ _ 0 + + + + + + + + +
X=3 - - - - - - - - - - - 0 + + +
x+2 — — = 0+ + + + ot 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+

x-1Dx—-3)

- - ot ottt o+ o+ 0 - — — —
X+ 2 + + 0 0 + + +
€ i € —> X
-2 1 3

FIGURE 1.3
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Then we deduce the sign of (x — 1)(x — 3)/(x + 2) for various values of x, and
determine where it is positive. From Figure 1.3 we see that the solution of the
given inequality is the union of the intervals (—2, 1) and (3, ). []

If we had wished to solve the inequality

x—Dex-3 _

0
X+ 2 -

we would have used the same diagram, but at the end we would have selected the
union of those intervals on which (x — 1)(x — 3)/(x + 2) is nonpositive, namely
(—o0, —2)and [1, 3].

In Section 2.6 we will discuss a second method of solving inequalities that
uses results from calculus.

The distance between a and b on the real line is either a — b or b — a, whichever
is nonnegative (Figure 1.4). Likewise, the distance between 0 and b is either
b—0 =bor 0 — b= —b, whichever is nonnegative. The distance between a
point on the real line and 0 is the basis for the definition of the absolute value of a
number.

Distance =a — b Distance = b —a
—— rm——
| 1 1 [
T T T T
b a a b

FIGURE 1.4

For example, [6| =6, [0] =0, [—5| = —(—5) = 5, and I8 —17|=|-9| =
—(—9) = 9. Notice that |b| is the larger of b and — b, whichever is nonnega-
tive. Geometrically, |b| is the distance between 0 and b. More generally, |a — b|
is the distance between the numbers a and b.

We will use the following properties of absolute value in the remainder of
this book:

|—al =lal, and |a—b|=|b—al (6)
lab| = |allb], and [b%| = |b|? (7)
—lbl < b <|b| t)

)
(10)
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FIGURE 1.5

Except for (9) and (10), these properties follow directly from Definition 1.1.
We will verify (9) and leave (10) as an exercise. To verify (9), we first use (8):

—a<|al and a <|q|

—b<|b| and b <|b|
Adding these inequalities vertically yields

—(@+b)=—a—b<|a|+|b|] and a+ b <|a| + |b|
Since |a + b| is the larger of a + b and —(a + b), it follows that
la+b| <la| + |b|
Next we show that if b > 0, then
x| <b ifandonlyif —b<x<b (11)

To verify (11) we notice that |x| < b means that

if x>0, then x<b
and

if x<0, then —x<b,or equivalently, —b < x

From (11) we see that the solution of the inequality |x| < b is the open interval
(—b, b). Statements analogous to (11) pertain to inequalities of the form |x| < b,
|x| > b, and |x| > b.

Example 4 Solve the inequality |x — 1| < 3.

Solution By (11) the given inequality is equivalent to
—3<x—-1<3

or equivalently, —2 < x < 4. Thus the solution is (—2, 4. O

Geometrically, |x — 1| < 3 means that the distance between x and 1 is less
than 3. More generally, |x — a| < d means the distance between x and a is
less than d. Thus |x — a| < d if and only if x lies in the interval (a—d, a+d)
(Figure 1.5).

Example 5 Find all values of x such that |[x =7 =09.
Solution Here we wish to find the values of x whose distance from 7 is no less

than 9. Thus the required values of x are those in the union of the intervals (— oo,
—2]and [16, 0). [

Example 6 Find all values of x such that 0 < |x — a| < d, where a is any
number and d is any positive number.
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Solution The double inequality 0 < |x — a| < d means that

0<|x—al and

|x —al<d

From 0 < |x — a| we know that x # a. By our comments above, the values of x

satisfying |x — a| < d lie in the interval (a — d, a + d). These two observations

L S,
= =
a—d a a+d
0< |x—al<d
FIGURE 1.6 (a, a + d) (Figure 1.6).

give the complete solution, which is the union of the intervals (a — d, a) and

d

This concludes our discussion of real numbers, inequalities, and absolute
values. The concepts and rules we have given will play an important part in our

study of calculus.

s

EXERCISES 1.1

In Exercises 1-4 determine whether a < b or a > b.
l.La=%,b=% 2.a= -1 b= —-0142857
3.a=nLb=98 4. a=(32%4b=10
5. Use the fact that (\/5)2 =2 to determine whether

V2 <141,/2=141,0r /2> 141
6. Use the fact that (,/T1)> =11 to determine whether

J11 <33, /T1 =33, 0r J11 >33

In Exercises 7-14 state whether the interval is open, half-open,
or closed and whether it is bounded or unbounded. Then
sketch the interval on the real line.

7. [—4,5] 8 (-2 —1) 9. (—,3)
10. [3,3 11. [0, c0) 12. (5,7)
13. (=0, —1] 14. [-41,4

In Exercises 15-18 write the union of the two intervals as a
single interval.

15. (—=3,2)and [1,4) 16. (—o00,0] and [0, 3)
17. (1,3) and (2, 0) 18. (— 00,47 and (0, «0)
In Exercises 19-38 solve the inequality.

19. —6x—-2>5 20. 4 —3x>7
2. —1<2x—-3<4 22. —01<3x+4<01
. (x=Dx+1H=>0 24. (x—1)(x—2)(x—3)<0
X
x(x—=Hx+H <o 26, ———— >0
25 x(x —3Hx + %) < x—Dx 12 >
2x — 1) (2x — 3)@dx + 1)
27, — — 350 28 ———— 7
x+Dx+3) = x—3 =0
29. 4x3 —6x2 <0 30. 3x2—2x—1>0
1
31. 8x——2>0 32, 8x+iz<0
X X

4x(x? — 6) 2x(x% = 3)
33— —_—
5 ——— =i TR
P 4+1-2 .—2t—3
35, ——+>0 3. ——
(t2—1° 281150
2—x Ix? =1
37. ——>0 38 —
9 — 6x (1—x2)2 = 0

In Exercises 39-42 solve the inequality.

1 3
39. ﬁ>§ (Hint: Write the inequality as 1/(x + 1) —
X

3/2 >0, and then write the left side as a single fraction.)

1 x+1 1 2 —5x
40.m<—2 41.x_1s§ 42.3_4x2—2
In Exercises 43-46 evaluate the expression.

43. —|-3| 4. |- /2|

45. |=5| + 5] 46. | 5| —|5]
In Exercises 47-58 solve the equation.

47. |x| =1 48. |x|=n

49. |x — 1| =2 50. |2x — 3| =1
51. |6x +5|=0 52. 13 —-4x|=2
53. |x| = |x|? 54. |x| =1 — x|

S5 lx+12+3|x+1/—-4=0

56. [x =2 —|x—=2[=6

57. |x + 4] = |x — 4

58 x — 1] =2x + 1]

In Exercises 5970 solve the inequality.

9. Ix=2|<1 60. [x — 4| < 0.1
61. |x + 1] < 0.01 62. |x +3|<2



