. QUALITY
~ ASSURANCE
I FOR

COMPUTER
SOFTWARE

Robert Dunn and Richard Ullman
" Both ITT Avionics Division



OUALITY
ASSURANGCGE
0
COMPUTER
SOFTWARE

ITT Avionics Division

Tmal
Richard Uliman

ITT Avionics Division

New York St. Louis SanFrancisco Auckland Bogota
Hamburg Johannesburg London Madrid Mexico Montreal
New Delhi Panama Paris Sao Paulo Singapcre Sydney
Tokyo Toronto



Library of Congress Cutalogmg' in Publication Data

Dunn, Robert, date
Quality assurance for computer software.

Bibliography. p.

Includes index.

1. Computer programs— Quality control.

I. Ullman, Richard. 1II. Title.
QA76.6.D844 001.64°25 81-664
ISBN 0-07-018312-0 AACR2

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as .
permitted under the copyright Act of 1976, ng part of this
publication may be reproduced, or distributed.in any form
or by any means, or stored in a data basc or retrieval

system, without the prior written permission of the
publisher.

234567890 KPKP 898765432

The editors for this book were Barry Richman and Stephan
Parnes, the designer was Elliot Epstein, and the production
supervisor was Thomas G. Kowalczyk. It was set in Trump
by University Graphics.

It was printed and bound by The Kingsport Press



Software enginecring — the organized, “scientific” approach to computer soft-
ware development — originated in the late 1960s. Quality assurance of product
development goes back to the 1950s. To judge by the rate with which inno-
vative techniques are being introduced to both fields, neither has fully
matured. For our part, we rather like working in an emerging discipline; what
could be duller than knowing all the answers? More important, the expanding
forms of quality assurance and software cngineering made it inevitable that
sooner or later they would rub up against each other.

As we sec it—and 1t is heartening to note that this is becoming the pre
vailing view — software quality assurance is the mapping of the manaverial
precepts and design disciplines of quality assurance onto the applicable man-
agement and technological space of software enginecering. In the transtdr,
familiar quality assurance approaches to improving control and performance
metamorphose into techniques and tools different from those 1o which the
quality community is accustomed. For its part, softwarce approaches to the pro-
~ duction and maintenance of computer software arc given new form as well as

procedural ctliciency. Yet both communities, to their mutual advantage can
easily relate to this concept of software quality assurance.

In stating that this is becoming the prevailing perception of software qualits
assurance, we have tacitly admitted to the existence of other views. Thore are
those within the world of computer software who fecl that better software will
result simply through an increased commitment to adopting the practices of
software engineering. They ignore the profit realized from the application ot
quality methodology. Conversely, there arc, within quality, people who toil
that all that is required is their overseeing software’s conformance to its own
development and maintenance standards; this without regard to the content of
those standards.

No. Software quality assurance can be constructive, can avoid being a



vill PREFACE

bureaucratic impediment, only by drawing upon fundamental concepts of
both software engineering and quality assurance. It is the resulting amalgam
which we set out to describe and whose many ingredients can be seen in the
road map to the balance of the book, which is provided toward the end of
Chapter 1. :

If, in our description, we seem to have given software quality assurance a
better defined structure, to which goal we immodestly confess, it is only
because the timbers had already been hewn. The number of people who have
contributed to the constituent elements of software quality assurance is sur-
prisingly large, considering the relative youth of both of the disciplines from
which it derives. The references at the end of each chapter contain but a frac-
tion of the names of those who, directly or indirectly, have shaped our views,
and to whom we are grateful.

The act of presenting software quality assurance in the form of a book
involved fewer people, and it is possible to acknowledge by name the help
received from those who were most prominent in giving us their time and
insight. Phil Crosby, Steve Dunn, and John Tarrant. None of this, of course,
would have mattered without the dedication and patience necessary for the
preparation of a manuscript, for which we owe a special debt tc Pétty_
Siegendorf.

Robert Dunn
Richard Ullman

August 1980



ROBERT DUNN is a Staff Consultant at ITT Avionics Division, where
he heads the software quality assurance program. He is a well-known
lecturer at conferences and symposiums on software quality control,
and has represented industry on select government software planning

teams.
RICHARD ULLMAN is Vice President and Director, Product Assur-

ance, ITT Avionics Division. He is responsible for the quality of all
products produced by ITT Avionics Division. Mr. Ullman was a U. S.
delegate to the NATO Symposium on Quality and Its Assurance in
1977 and 1980.

LR A
F190,/65 (#3-5/4114)
it BRI B ARIE
GB 000320




PART 1

PART 2

PART 3

PART 4

PART 6

Preface

INTRODUCTION

1 How Did a Nice Discipline like Quality Get Mixed Up
with Computer.Software?

COMPUTER SOFTWARE
2 Fundamentals of Computer Software
3 The Life Cycle of Software
4 The Problems

THE QUALITY SOLUTION
5 Defect Prevention

6 Configuration Management

7 Testing

8 Tools

9 The Quality Program

IMPLEMENTATION
10 Selling and Staffing
11 Standards, Policies, and Plans

TOWARD QUANTIFIABLE STANDARDS
12 Reliabllity aﬁd the Measurement of Goodness

Index

vii

15
39
7

81
129
151
183
211

259
279

297

335



ChaplCigl | 1-3
Hew Bld a Nise
Bissipline like

Mixed 8p with
Semputer Seltware?

In the competitive environment in which we operate, management is contin-
ually faced with the challenge to organize or develop resources in the optimum
manner to satisfy customers and stockholders. The computer revolution has
intensified this challenge by making new major demands on people and orga-

- nizations throughout the industrial world. The more progressive companies

have been able to meet this challenge by changing their philosophies, atti-
tudes, and organizations to keep pace with the times. However, one of the least
understood areas in product development today is that of computer software.
Management seldom has the proper training, experience, and understanding
to properly evaluate the methods used to control software efforts. Yet control
is of paramount importance. The history of software development is a chron-
icle of overruns in dollars and months, continued beyond delivery to include
the operational life of software as well.

This observation is not unique, but is recognized within government and
industrial organizations everywhere, as the proliferation of computers invades
our financial structure, the control of our manufacturing processes, the equip-
ment vital to national defense, our everyday life (appliances, automobiles, etc.),
and even the manner in which management decisions are made. Moreover,
we can expect the use of computers to expand at ever-increasing rates over the
next decade as their cost per unit of computation continues to drop
dramatically. . . i

There is considerable concern, then, to fashion effective methods of man-
aging the anticipated quantum jump in computer use; of even greater critical-
ity, of managing the software efforts that will accompany this expansion. This
book addresses the contribution that can be mdde by quality assurance, the
discipline most overlooked ty thase who have sought to tame the software
monster, yet one that we feel_bxerts favorable effect far out of proportion to its

cost.









4 INTRODUCTION

A HISTORICAL CASE FOR SOFTWARE QUALITY

Before dealing with software quality assurance, we shall briefly examine the
larger field of quality control, starting with its early beginnings and continuing
on to its modern practice. By tracing quality’s evolution from primitive origins
to its present reflection of today’s technological society, this examination will
lay a foundation for the development of parallels to software.

Table 1-1 depicts the evolution of quality control. It indicates that pnor to
the era of mass production, quality control was strictly an inspection function..

TABLE 1-1 Evolution of Quality Control

Time period

Quality control
implementation

Remarks

Pre-20th century
1916

1920-1940

1940-1950

1950-1970

1970-1978

1978

Inspection by the producer

Introduction of quality
control by Bell Labs

Standardization and
inspection

Introduction of statistical
quality control

Formal programs
encompassing all facets of
design and development

Product liability and
product safety,
management recognition

Introduction of computers
into products evolves into
software quality assurance
for all software

Pride in workmanship

First formal programs

Necessitated by mass
production

To economically control
more complex and higher
output manufacturing
processes

More prevalent in defense-
type organizations

Expansion of quality
control into all industries

Even today, there are elements within industry that persist in thinking of qual-
ity as an inspection function. Nothing could be further from the truth. Back
in the early days, the responsibility for inspection of a product was that of the

_-artisan who made it. The inspection was not consciously performed as a formal
and separate action; it was simply made to be sure that the item met the arti-
san’s personal high standard of workmanship, and also that it was precisely
what the customer had ordered. An analogy may be drawn-at this juncture
with the early software designer. the accuracy and effectiveness of the software
was dependent on the designer’s diligence, ability, and personal standards of
quality. We will explore this thought in greater detail in later chapters.



QUALITY AND COMPUTER SOFTWARE §

As the industrial revolution took hold and the mass production of products
became commonplace, the need for standardization of production and inspec-
tion methods gained acceptance. This was coupled with formal progrants that
were necessary to the planning and management of these efforts. As the oper-
ations became more complex, so did the need for increased controls to provide
uniformity of the product. Acceptance and rejection criteria had to be estab-
lished. The need for economical methods for applying these controls and cri-
teria led to the adoption of statistical concepts in the control of the manufac-
turing processes.

. As the quality function became more sophisticated and its effectiveness in
dealing, with more complex problems and controls became more obvious,
enlxghtened managements began to reahzc the importance of the function.
Thisgeceptive attitude enabled the more progressive and innovative members
of the quality. profession to develop and conv.Jie management to support pro-
grams such as that which was muq:luccd into the ITT system by Philip
Crosby, ‘who was the first to hold the pasition of vice-president and director of
quahty of ITT, Worldwide. His quality policy was establnshed on the follow-

ing basnc credo:

Perform exactly like the requirement —or cause the requirement to be officially
“changed to what we and our customers really need.'

. The corpotate policy which ensued assured that a quality management
function was established in each ITT system unit to make certain that {he

following objectives were met:

-« Acceptance and performance requirements of products and servicés are

met .
« Cost of quality goals for each ITT unit are achieved

 Consumer affairs, product safety, and environmental quality programs
are implemented and properly directed

* Quality ‘personnel are provided required communications and training

In practiéal terms, the foregoing policy is applied and accomplished by first ‘
establishing the quality function within the unit organization, independently
from manufacturing or engineering, thus avmdxng the inevitable emasculation
which would otherwise result.

In manufacturing units, product acceptance at all levels (incoming, in-pro-
cess, and final, both in manufacturing plants and at installation sites) is con-
ducted by the quality department. Product acceptance includes inspection and
final test operations and the necessary planning activities, such as test engi-



8 INTRODUCTION

neering, to make it effective. For units involved in service activities, conform-
ance of the service to requirements is determined by the quality department,
using inspection, quality auditing, and other techniques. Results of these
actions are reported in order to assure corrective action to prevent repetitive
defects and to provide management data.

THE SCOPE OF QUALITY

All necessary quality engineering functions (such as inspection and test plan-
ning, test equipment selection, test procedures, software, test programming,
conformance audit planning, supplier quality control, data collection and anal-
ysis, formal corrective action and follow-up, reliability programs, product qual-
ification, calibration of equipment, analysis and control of returned products,
inputs to design reviews, inputs to new product planning, and status reporting),
as well as necessary monitoring functions, are implemented by quality in
coordination with engineering, manufacturing, technical, and other applicable
functional areas. Qualification testing is conducted on all new products, asso-
ciated documentation, and processes to assure conformance of the product with
all requirements of the applicable specifications.

If we consider software, too, to be a product, whether it stands alone or is
part of a product that would in any case fall under the purview of quality, the
foregoing description of the quality arena applies no less to computer software
than to goods and services. However, for the most part, the quality community
is not yet tooled to serve the needs of software.

We have touched lightly on how the concept of quality has grown from
the pride in workmanship of artisans to a sophisticated management function
in modern manufacturing or service industries. As a modern management
function, the quality organization must remain aware of all technological
changes which will have an influence on the operational policies and levels of
sophistication of quality and must position itself to react properly to such
changes. In the past, managers have always been faced with changing tech-
nologies in the products being produced. However, up to this time the changes
have in most cases occurred in hardware; classical quality methods have
always applied. We are now facing a basic conceptual change in our products.
These products are becoming more and more dependent upon computers
(under which name, for convenience we include microprocessors), and they,
in turn, are dependent upon the software that is resident within them. Profes-
sionals in the quality field must address this change, but this is not as straight-
forward as was the transition from various hardware technology levels. More-
over, as has already been noted, there is a need for quality’s participation in
independent sottware as weli. .

We have also to consider the software professional, who must recognize, as
many already have, that software has become too prominent in our society to



QUALITY AND COMPUTER SOFTWARE 7

be developed and maintained in the informal, casual atmosphere of software’s
beginnings. We posit, too, that it is the responsibility of upper management,
to whom both software and quality report, to marshal all of its resources in the
control of software cost, schedule, and reliability.

‘Later pages of this book will discuss the problems peculiar to computer soft-
ware, the quality solution to these problems, methods of implementing a soft-
ware quality program, and new developments in establishing quality standards
for software. Viewed in the large, software quality will result from the partic-
ipation of software management, quality management, and upper manage-
ment. To enable all interests to understand the quality solution proposed, Part
2 provides a glimpse of the software world to those who have had no previous

exposure.

THE NEED FOR SOFTWARE QUALITY ASSURANCE

Not unlike the growth in the influence of quality and the manner with which
it now petforms its essential functions, computer software has grown from the
casual preparations of small programs affecting few people to the development
and maintenance of program systems involving the participation of dozens,
even hundreds of people, affecting thousands more; and as the size of software
projects has escalated, new techniques have evolved for accomplishing and
controlling. the efforts. Software quality assurance is concerned with all com-
puter software. Nowhere, however, is the influence of software more vividly
demonstrated than in the class of applications referred to as embedded
* software.

Computers, whether microprocessors or “‘maxi” computers, which are an
integral part of an instrumentation system (e.g., aircraft autopilot, oil refinery
control system, department store point-of-sale system, microwave oven), are
said to be embedded within the system. Such computers cohnect directly with
sensors, control devices, unique keyboards, or unique display devices. The soft-
ware that drives these computers is also said to be embedded. Unlike most
computer applications, where the computer controls the input of data, embed-
ded software must process data in real time, that is, at rates determined exter-
nally to the computer.

No system is of greater quality than the quality of its parts, and if one of
the parts is a computer, then the quality of the program controlling that com-
puter will affect the quality of the entire system: Computer programs, whether
embedded or not, can, and nearly always do, have latent defects. These defects
can cause the performance of a system to degrade, as in forcing overly long
response times in an online reservation system; or they can cause a system to
fail utterly, as when erroneously enabling a missile self-destruct mechanism
during the launch phase. (A more complete “chamber of software horrors,”
including voting systems that awarded the wrong candidate the office, and a



8 INTRODUCTION

warchouse data base system that lost track of 15 tons of frozen liver, is given
by Glenford Myers,”> whose less humorous, but more important, contributions
to softwarc quality will be encountered in Part 3.)

For some time now, there have been computer programs embedded within
instrumentation systems. However, with the development of microprocessors
of considerable logical and arithmetic power, we are witness to a rapid increase
in the number of Systems and equipments, from video games to large military
systems, containing one or more computers. Indeed, increasingly, we see the
software embedded within these exerting an influence on the performance of
the systems equal to or greater than that of the hardware. The rollary, that
the quality of the product is as much vested in the software as in the hardwarc,
is easily drawn. Parenthetically, we may infer from this that the value of the
quality community, at least within the electronic and aerospace industries,
will be maintained at its present level only if that community has prepared
itself to cope with the quality aspects of embedded software. We may note that
at present the specific problem of software reliability is being addressed prin-
cipally by those who develop software, with scant regard to traditional quality
disciplines. This is, of course, reminiscent of our nineteenth century artisan of
Table 1-1.

As dramatic as the failures (and cost overruns) of embedded software may
be, we are concerned with all software. There is no class of software that has
not plagued management with cost and schedule disasters, premature obsoles-
cence, and customer dissatisfaction. Software quality assurance is a three-
forked challenge. a challenge to software development to accept the control
philosophies of quality, a challenge to upper management to recognize that its
own purposes will be served by early funding of quality participation, and a
challenge to the quality community to acclimate to the practices appropriate
to this relatively new technology.

HARDWARE VS. SOFTWARE: SIMILAR BUT DIFFERENT

Accepting the challenge of software quality requires some rethirking of the
manner in which quality assurance can be effected. While quality 2ngineering
can capitalize on its position of independence from the development process,
even as it does in the hardware environment, it must recognize that there are
inherent differences between software and hardware that will affect the prac-
tices that quality engineering employs. '

For one, we note that much quality assurance effort is related to the certain
knowledge that hardware degrades with use. Software, on the other hand, can
be expected to improve Once a program bug is found and corrected, it remains
corrected. Thus, the concept of mean time before failure, although applicable

to software, must be interpreted in a new sense.
Perhaps the most prominent quality assurance role nas been in inspection



QUALITY AND COMPUTER SOFTWARE 9

"of hardware, where the effort expended is mainly to assure that the original
design is being correctly copied in production units. There is no such need in
software quality assurance. After a program has been 1udged acceptable, there
need be no concern for the ability to copy it precisely.

Hardware can warn that a failure is likely to occur soon. In the electronic
world, for example, one can, as part of quality assurance throughout the life
cycle, periodically measure pulse shapes, power supply ripple, and other char-
acteristics for evidence of an impending malfunction. Software will give no
such warnings.

Hardware can be built of standardized components, from devices to com-
plete assemblies, the reliability of which are known. For the most part, soft-
ware contains few program elements with which there has been prier
experience.
~ Torepair hardware is to restore its original condition. The repair of software

results in a new bascline (i.e., product definition) condition, with the conse-
quence that program documemanon must be updated if the success of fumre ‘
repairs is not to be jeopardized.

In general, equipment can be tested over the entize spectrum of operatnonal
conditions in which it will perform. [With the complexity that will attend
very largc scale integrated (VLSI) circuits, this may soon no longer be the case.]
Thus, at least at present, the performance aspects of equipment may be com-
pletely verified by test. The number of discrete states that software can assume
is so great that exhaustive testing is impossible.

For quality engineers, the sum of these differences between hardware and
software implies the message that while traditional quality assurance disci-
plines may apply, the practices will have to differ, and most specifically, will
have to emphasize the concept of built-in quality, of “doing it right the first
time.”

BUILT-IN QUALITY

For computer software, built-in quality is the result of a number of interde-
pendent technical and managerial techniques and tools. This is the substance
of Chapters 5, 6, 7, and 8, which follow the introductory material of Chapters
2, 3, and 4, which we recommend to readers who have little experience with
software, The role of the independent quality auditors, intertwined with the
elements of built-in quality, is best seen in Chapter 9. The quintessential role
of quality is to focus its attention on the establishment of standards conducive
to quality, and to audit the fidelity to which these standards are adhered. All
too often, software is produced under the most trying of schedules. Authori-
zation to start a project may slip. Systems analyses and simulations required to
define the system concepts may slip. Hardware availability and the readiness
of new support software may slip. Only one thing never changes: the end date.



10 INTRODUCTION

Accordingly, and consistent with the precepts that quality is conformance
to requirements and prevention of defects, it is the responsibility of quality to
act as the independent instrument of management in auditing all aspects of
software development and maintenance through the review of plans, specifi-
caiions, designs, test documentation, configuration control, and programming
standards. Quality must also assume its traditional responsibilities in vendor
surveillance of procured software, qualification and acceptance of all software,
certification of tools used for software testing, defect analysis, and quality
improvement analysis.

IMPLEMENTATION

The manner in which quality will operate in all these areas can best be
ensured by policies and procedures much like those which quality engineering
has traditionally prepared for reliability engineering and inspection. These will
define the authorities and responsibilities of quality, and in detail give notice
of the information to be reviewed at each audit, the mechanism with which
testing will be monitored and certified, the instruments for assuring corrective
action, and the means by which test and defect report records will be retained,
controlled, and used. These matters are attended to in Part 4, along with the
establishment of software quality assurance’s credibility with the management
and software communities, and the techniques applicable to the staffing of soft-
ware quality assurance organizations.

Once the program is in place, a formal quality cost system should be intro-
duced so that the effectiveness of the program can be monitored and cofrective
action implemented as required. The basis for this is that all are then working
as an integrated group with accepted standards within the company with a
common goal of producing inherently quality software.

Finally, Part 5 deals with the difficult establishment of software quality
standards. It proposes no single solution, but offers a discursive introduction to
evolving techniques and models that may prove valid candidates on which to
base quantitative evaluation methods.

SUMMARY
1. Historically, computer software has been plagued by cost and schedule over-
runs during development and failures during operation.

2. Quality controls were initially introduced to industry as a response to prob-
lems attending the complexity of manufacturing operations as production
evolved from that of the individual artisan to that of the modern factory.
The effectiveness of these controls was achieved by their being vested in an
organization separate from manufacturing, namely, quality.



