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PREFACE

Radiation dosimetry is concerned with the determination of the energy
absorbed in a medium exposed to ionizing alpha- and beta-rays, electrons,
and protons, and to ionizing secondary radiation produced by x-rays,
gamma-rays, and neutrons.

In recent years problems of radiation dosimetry have multiplied rapidly
with the vast production of artificial radicactive materials by reactors and
the increasing use of high-voltage accelerators of various kinds. The energy
ranges have been expanded considerably and electron, proton, and neutron
beams find an increasing variety of important applications.

The continuing growth of radiation dosimetry and its extensive and
widespread literature have created the need for an up-to-date and unified
presentation of the significant aspects of the field. This book, written for
those working with the applications of radiation to medical, industrial, and
research problems, is designed to fill this need. The rapid growth of indus-
trial power programs and technical uses of isotopes may well cause these
applications to overshadow the medical uses in the future. The basic tech-
niques of radiation dosimetry are the same in all these areas of research,
and dosimetric problems of all kinds, including questions of health physies
and personnel protection, ean be solved by using the information and
data presented here. The extensive references to the original literature will
help the reader to find more specialized information if necessary.

The book is divided into three main parts. The first part presents the
fundamental principles of dosimetry. In the first two chapters the concepts
of dosimetry and the physical properties of radiation and their interaction
with matter are discussed. In the third chapter, some of the basic biological
and medical effects of radiation are presented to help the nonmedical
reader understand the important medical implications of the radiations he
is dealing with.

In the second part of the book the various instruments available for dos-
age measurements are described together with their uses for different types
of radiation. This part includes information on scintillation detectors, pho-
tographic film, chemical and colorimetrie indicators, and calorimetric
methods, none of which have been extensively discussed previously from
the viewpoint of their dosimetrie applications.

The third part of the book presents the problems of dosimetry of various
radiation fields. The chapter on x-rays is a thorough, modern review of a
widely discussed subject. The chapters dealing with electron and proton
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vill PREFACE

beams open subjects which have rarely been dealt with before. The treat-
ment of beta-ray dosimetry is perhaps the first comprehensive approach to
this difficult field. No attempt has been made to treat ultraviolet and other
kinds of nonionizing radiations.

When, three years ago, Academic Press suggested the organization of a
book on radiation dosimetry it became immediately apparent that an up-
to-date presentation of the intricate aspects of the field could be written
only with the help of a number of specialists. The editors’ problem was
then to produce a cohesive textbook dealing with all aspects of radiation
dosimetry and not merely to present a collection of specialized papers on
various subjects related to dosimetry. Towards that end numerous drafts
have been written and rewritten and some sacrifices have been made in
the subject matter of various chapters. The editors assume complete re-
sponsibility for deletions and alterations made necessary by the desire to
achieve an integrated presentation.

We wish to acknowledge the assistance given by Professor R. D. Evans
who has served as advisory editor for this book. We are grateful for the
encouragement given by Professors Failla, Gray, and others. Numerous
reviewers have carvefully read the various chapters, and their help and
criticism is greatly appreciated. The subject index has been prepared by
Mr. Richard MeCall, and the figures have been redrafted by Mrs. Grace
Rowe,

We would like to thank Dr. Belton Burrows of the Boston Veterans Ad-
ministration Hospital and Dr. Walter Bauer of the Massachusetts General
Hospital for their encouragement and permission to allot the necessary
time to this project.

Boston, Massachusetts GERALD J. HINE
March, 1956 GorpoN L. BROWNELL
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I. INTRODUCTION

The subject of radiation dosimetry has its origins in the last years of the
nineteenth century when x-rays, then newly discovered, were put to almost
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2 RADIATION TNITS AND IONIZATION THEORY [1-I]

immediate medical use. Both the successes, like that of the first recorded
tumor treatment in 1899, and the failures of those early attempts under-
lined the necessity for some quantitative measurement of the radiations
emanating from an x-ray tube. Most of the early workers used photographic
or fluorescence methods for measuring x-ray intensities; but it is of interest
that chemical methods were tried and also that as early as 1897 a measure-
ment was made of the heat produced by the complete absorption of an x-ray
beam in a metal. For reasons of lack of sensitivity, of unreliability, or of
unwanted quality dependence, these early physical techniques were even-
tually displaced by ionization methods; but three decades passed before an
internationally acceptable method of defining and measuring an x-ray dose
was achieved. The introduction of the roentgen in 1928 likewise turned at-
tention away from use of biological indicators, which by their nature inev-
itably lacked the precision of physical measurements.

The problem today is no longer solely that of standardizing dose in the
medical use of x-rays and radium vy-rays. The advance of nuclear science
and the now-abundant production of radioactive materials pose the prob-
lems of dosimetry in new and complicated forms. More than ever it is
necessary to determine the physical energy deposition in a variety of media
when irradiated by any one of a wide energy range of quanta or by any
type of ionizing particle. Modern versions of some of the earlier methods,
notably chemical (Chapter 8) and calorimetric (Chapter 9) methods, are
gaining an important place in radiation dosimetry. At first, however, the
fundamental concept of radiation dose and the extent to which it has been
satisfactorily measured by ionization methods has to be considered.

A, Types of lonizing Radiation

Some indication of the extent and nature of the problem of radiation
dosimetry is apparent from the great variety of the ionizing radiations which
are now available. Table I gives a list of commonly used radiations, their
energies, and the approximate average range, in low atomic number ma-
terial, of the associated ionizing particle. Electromagnetic radiations, having
energies above a few kev, ionize by virtue of the secondary electrons re-
leased when they are absorbed. Corpuscular radiations ionize either di-
rectly, because they are charged, or indirectly through charged particles set
in motion by collision processes,

The 10nizing particles have complex energy spectra, and hence only the
order of the mean range is given in Table I. In biological materials which
have nearly unit density the range can vary from about 1 micron to a few
centimeters, or even to as much as 1 meter in the case of very-high-energy
protons. The magnitude of the range in relation to the size of the biological
entity is fundamental to the problem of determining the energy deposition

e —



[1-T-A] INTRODUCTION 3
TABLE I
Tyres oF IoN1ZING RADIATION
- Average range of ionizing particle
.. Energy Ion}Zlng in 10%\* atomie number material
Radiation particle in
range, Mev tissue
gm/cm? cm of air at NTP
1. B-rays 0.015-5 Electron 10—4-1.0 0.1-800
2. Electron beams 2-20 | Electron 1-10 800-8000
3. y-rays 0.05-2.9 | Electron 5 X 104-0.6 0.4-450
4. X-rays 0.01-0.4 | Electron 10745 X 103 0.1-4
5. X-rays 1-1¢ | Electron 5 X 107%-1.2 30-230
6. X-rays 10-30 | Electron 1.2-3.5 15002700
7. Fast neutrons 0.1-10 | Proton 10-4-6 X 102 0.1-45
8. Slow neutrons 0.1ev | 0.6-Mev 10~% (protons) 0.8 (protons)
protons 0.5 (electrons) | 400 (electrons)
(+2.2-Mev
Y-rays)
9. Proton beams 5400 | Proton 3 X 10—%-102 23-8 X 104
10. a-rays 5-10 | o-particle | 3 X 107%-10-2 2-8

in irradiated organisms. Likewise the particle range in air or other gases is
a major consideration in the practical realization of the theory of ionization
dosimetry. Although detailed consideration will follow later in this and other
chapters, it may be noted that air-ionization methods are applicable where
the same type of ionizing particle is released in the ionization chamber and
in tissue. Where this is not so, as in the case of neutrons and high-energy
protons, both the walls of the ionization chamber and the gas filling must
simulate tissue in atomic composition, especially in respect to the hydrogen
content (see Chapter 15). Trurther considerations are necessary when more
than one type of radiation is present and where nuclear reactions occur.

B. Physical Quality and Intensity

For many purposes an exact specification of radiation quality is not neces-
sary. In therapeutic x-ray work, for example, a sufficient indication of the
quality of the radiation is given by a simple function of the penetration of
the beam. The function frequently employed is the half-value layer (HVL),
defined as the amount of some standard material which transmits 50% of
of the incident radiation. The half-value layer can be used further to
specify an effective wavclength or effective energy as that wavelength or energy
of a monoenergetic radiation which exhibits the same half-value layer as the
heterogeneous beam in question. The only complete specification of the
physical quality of a radiation, however, is the spectral distribution of wave-
lengths or energies present (Chapter 2). In its most useful form, the dis-



4 RADIATION UNITS AND IONIZATION THEORY [1-I-B]
%30 %108 )
>
12 A OOkv:HVL 2.9 mm Al
E A B 185 kv:HVL 0.79 mm Cu
-

n
[e]

A\

Number of Photons per cm?/r (per 5
)

OO 50 150 200

100
Photon Energy (kev)

F1s. 1. Photon spectra deduced from absorption data. The mean energies of radia-
tions 4 and B are, respectively, 52 kev and 90 kev. The effective energies derived
from the stated half-value layers are 34 kev and 71 kev, respectively.

tribution, showing the number of photons in each energy interval, enables
calculation to be made of the numbers and energies of the secondary ioniz-
ing particles released in tissues or other media, when these are needed for
purposes of dosimetry or for the interpretation of chemical and biological
effects. The effective energy of the beam derived simply from the half-value
layer does not necessarily coincide with the mean energy more correctly
deduced from the photon spectrum. Methods of specifying the effective
energies of heterogeneous radiations should be carefully scrutinized if they
are being used to correlate possible energy-dependent phenomena. The
photon spectra in Fig. 1, which have been deduced from absorption data
by a method described in Chapter 2, illustrate the points discussed. The
effective energies derived from the half-value layers are 34 kev and 71 kev
for radiations which have mean energies of 52 kev and 90 kev, respectively.
Deductions from the single absorption measurement of the half-value layer
underestimate the mean energy of the radiation.

The methods of radiation spectroscopy are dealt with in Chapter 2; here
it should be noted that where quality dependence is being investigated the
complete energy spectrum of the radiation has to be determined.

The 1ntensity of electromagnetic radiation at any point is defined in its
precise sense as the radiation energy in ergs flowing per second through
1 em® of area perpendicular to the direction of propagation (40). The radia-
tion at a given point is completely specified, therefore, if the photon energy
spectrum and the energy flux are known.

An equivalent and sometimes useful specification is the statement of the
photon energy spectrum and the photon flux, i.e., the number and energy
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of photons flowing per second through 1 ¢m® perpendicular to the incident
direction. The relationship of the energy flux to the rate of energy absorp-
tion in any particular physical or biological system depends primarily on
the photon energy. Because the detection and measurement of any radia-
tion necessarily involves encrgy absorption by the measuring system,
intensity measurements and dose or dose-rate measurements will be seen to
present very similar problems. The ease or difficulty with which they ean be
solved depends in a like manner on the radiation quality.

C. Concept of Radiation Dose

It may be regarded as axiomatic that radiation can bring about a change
in a system only by virtue of the energy actually absorbed. A biological
effect, however, may also depend on the spatial distribution of the energy
released along the track of the ionizing particle. It will depend, therefore,
on the type and quality of the radiation, and equal energy absorptions of
different radiations may not produce equal biological effects. These features
of the action of ionizing radiations on living cells are illustrated in Fig. 2,
where the relative biological effect of a given energy absorption is shown to
vary markedly with the density of ion formation along the track of the
1onizing particle (33, 59). Generally, the effect of radiation on cell struc-
tures increases with increase in linear ion density, but certain “all or none”
actions, like the inactivation of bacteria and viruses, become less efficient
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F1a. 2. Variation of relative biological effectiveness (RBE) with linear ion density
for a number of radiobiological actions (33, 59).




