Computational
Methods for
Data Analysis

JOHN M. CHAMBERS
Bell Laboratories
Murray Hill, New Jersey

JOHN WILEY & SONS, New York ¢ Chichester ¢« Brisbane ¢ Toronto

Published by John Wiley & Sons, Inc.
Copyright © 1977 by Bell Laboratories, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation: of any part of this work beyond
that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission ot the copyright owner
is unlawful. Requests for permissio or further information
should be addressed to the Permissions Department, John
Wiley & Sons, Inc.

Library of Congress Cataldging iy Publication Data

Chambers, John M
Computational methods for data analy51s

(Wiley series in probability and mathematical
statistics)

Includes index.

1. Mathematical statistics—Data processing.
2. Numerical analysis—Data processing. 1. Title.

QA276.4.C48 519.4 77-9493
ISBN 0-471-02772-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2

PREFACE

The material in this book covers the major computational
methods which are important for data analysis. The approach is to
present the essential results on each topic, including an appraisal of
currently competitive methods and references to selected algorithms.
A special Appendix gathers together these references, with informa-
tion on the language and format of the algorithms and how to obtain
them. Most chapters conclude with a set of problems. These are
intended to be of practical value to the reader. None is entirely
trivial and some involve designing a significant set of algorithms.

Readers looking for a specific topic should go first to the quick
reference on the inside back cover. This will give page references
for both the method and the algorithms. If the topic of interest is
not obviously covered in the quick reference, try the index.

This is the first book to attempt a complete picture of comput-
ing for data analysis. 1 hope the result will be useful for several
groups of people. Those involved in analysing data may look here
to find computing methods currently competitive for specific prob-
lems. Users of existing packages and programs may compare the
reliability, accuracy and cost of the methods used to the current best
(and, 1 hope, will react strongly to any defects they find in the pack-
ages).

Those who are or would like to be active in statistical comput-
ing will find introductions to various topics, a wealth of unsolved or
partially solved problems, and references to more detailed treat-
ments. (Some of the important areas for future work are listed in
the Index, under "open problems".) Finally, I hope professionals in
the various fields of computing science will find it useful to see the
viewpoint and needs suggested by data analysis.

Computing for data analysis is an important, challenging and
varied field. Data analysis is increasingly an important part of
scientific research, economic analysis and many other activities.
Major analyses usually require extensive computing; hence, the vali-
dity and adequacy of the computation must be demonstrable to

vii

support the analysis. An awareness of the best computing methods
and of their limitations will be increasingly important. It is essen-
tial, when evaluating computing techniques, to be aware as well of
the real goals of the data analysis, so as to sort out the relevant from
the merely interesting. Having invoked these important responsibil-
ities, 1 should quickly add that working on these frontiers of com-
puting and data analysis is frequently exhilarating and great fun.

I have had the opportunity of working at one time or another
in all the major areas described in this book. As a result, any list of
indebtedness would be sure to offend by omission. I can only hope
that the many experts who have given generously of their time and
advice will detect some beneficial effects in the result. The support
of Bell Laboratories in the research and writing of this book is grate-
fully acknowledged. [am particularly grateful for the stimulation of
discussions with many colleagues there, past and present. The
entite contents of the book have been set on a computer photo-
composition system at Bell Laboratories. It is hoped that this sup-
port will both add to the timeliness of the material and allow some
cost savings to be passed on to buyers. Portions of the material
have been presented in courses at Harvard University, Princeton
University and Bell Laboratories. Comments and questions from
students have been valuable in subsequent revisions.

Note to the Reader

The Chapters of the book are as self-contained as reasonably
possible. References to Equations, Figures and Sections within the
Chapter are given without Chapter number. The References are
collected, by Chapter, beginning on page 228. The Appendix deals
with algorithms by Chapter.

viii

CONTENTS

CHAPTER ONE
Introduction 1

1.a General Approach
1.b Data Analysis and Computing

CHAPTER TWO
Programming 5

2.a Structure of Computations in Data Analysis
2.b Program Evaluation

2.c Program Design and Structure

2.d Portability of Programs

2.e Programming Languages: General Discussion
2.f Programming Languages: Comparisons
Problems

CHAPTER THREE
Data Management and Manipulation 28

3.a The Management of Storage Space

3.b Arrays and their indexing

3.c Data Structures; Data Base Management
3.d Order Statistics: Sorting and Partial Sorting
3.e Searching and Table Look-up

3.f Using Data Base Systems for Data Analysis
3.g Summary and Recommendations
Problems

CHAPTER FOUR
Numerical Computations 58
4.a The Representation of Numbers; Bit-strings
4.b Floating-Point Operations; Error Analysis
4.c Operations on Arrays
4.d Approximation by Rational Functions

ix

[y

14
19
20
22
26

28
32
35
41
46
52
55
56

58
63
66
71

4.e Spline Approximations

4.f Evaluation of Approximations

4.g Numerical Integration

4 .h Fourier Transforms; Spectral Analysis
4.i Parallel Computation

Problems

CHAPTER FIVE
Linear Models 101

5.a Linear Regression

5.b Orthogonal Bases

5.c Orthogonal-Triangular Decompositions
5.d Statistical Summaries

5.e Singular-Value Decomposition

5.f Condition; Rank; Iterative Improvement
5.g Cost and Accuracy

5.h Weighted Least-Squares

5.i Updating Regression

5.j Regression by Other Criteria; Robust Regression
5.k Principal Components; Canonical Analysis
5.1 Analysis of Variance

5.m Summary and Recommendations
Problems

CHAPTER SIX
Nonlinear Models 134

6.a Introduction

6.b Optimization; Quadratic Methods

6.c Quasi-Newton Methods

6.d Other Optimization Methods

6.e Mathematical Properties

6.f Distribution of Estimates

6.g Nonlinear Least-Squares Estimation

6.h Nonlinear Equations; Fixed-Point Methods
6.i Constrained Optimization

6.i Summary and Recommendations

X

77
82
87
91
97
99

101
102
103
107
111
115
118
120
122
124
125
127
130
132

134
136
138
141
143
146
149
152
156
159

CHAPTER SEVEN
Simulation of Random Processes 161

7.a The Concept of Randomness 161
7.b Pseudorandom Uniforms 163
7.c Congruential Generators 164
7.d Other Basic Generators 170
7.e Modifying Generators 173
7.f Derived Distributions: General Methods 175
7.g Special Distributions 180
7.h Multivariate Distributions 183
7.i Monte-Carlo Methods 186
7.J Summary and Recommendations 190
Problems 191

CHAPTER EIGHT
Computational Graphics 194

8.a Graphics for Data Analysis 194
8.b Graphical Devices and Their Capabilities 197
8.c Geometry of Plotting; Two Dimensions 201
8.d Geometry of Plotting; Several Dimensions 204
8.e Plotting Curves 208
8.f Plotting Surfaces; Hidden-Line Removal 210
8.g Contour Plotting 213
8.h Scaling 218
8.i Scatter Plots 220
8.j Histograms and Probability Plots 222
8.k Summary and Recommendations 225
Problems 226

REFERENCES 228

APPENDIX
Availaible Algorithms 248

Index 257

xi

CHAPTER ONE

Introduction

a. General Approach

This book is intended to assist those who are involved in the
planning, selection, or development of computational support for
data analysis. There is general recognition of the importance of
such support for effective research and development in all branches
of science. The ability to do massive amounts of programmed com-
putations is the foremost change in the intellectual environment in
the second half of the twentieth century. The effective amount of
calculation possible in a given time has increased by about five ord-
ers of magnitude. Several revolutionary changes in equipment and,
to a somewhat lesser extent, in programming facilities have entirely
altered the scope of computing. The capabilities and practical
economics of computing continue to change at a rapid rate in many
respects.

Chapters 2 through 8 treat major topics of computational tech-
nique. Chapter 2 discusses programming and program evaluation in
general. Chapter 3 deals with data management and related prob-
lems. Chapters 4 through 7 cover numerical methods (general
methods, linear methods, nonlinear fitting, and simulation).
Chapter 8 discusses graphical computation.

A wide variety of computational topics is treated, since data
analysis needs support from nearly every branch of computer sci-
ence. The simpler approach of concentrating on a few, relatively
straightforward topics will not provide sufficient guidance for practi-
cal work. The computational topics are treated from the special
viewpoint of data analysis. The emphasis, techniques, and recom-
mendations, therefore, differ significantly from those for other appli-
cations.

For each topic, the discussion identifies the essential computa-
tional problems, outlines and compares the currently competitive
approaches and provides references to more detailed material,
including reliable published or generally available algorithms where

1

2 Introduction §l.a

possible. For the most part, it is assumed that some programmir}g
effort will be required, either in implementing procedures or in
modifying existing algorithms or other special-purpose software.

No attempt is made to rate existing packages or languages for
statistical computing in any overall sense. Users will be able to
check the facilities provided against the currently competitive
methods for a particular problem. Also, the steps required to
extend or improve the current capabilities of the package can be
assessed from the descriptions here. The concern is to outline what
is currently known and available to solve specific problems. Users
of packages may assess the facilities provided against this back-
ground. We especially try to suggest how new or extended facilities
can be developed.

Both current abilities and long-range prospects vary greatly
among different areas of computing. Some problems are relatively
easy and can be considered to be understood, in broad outline at
least; for example, linear least-squares and sorting. Others are in a
less satisfactory state at the moment, but can in principle be well
handled: for example, provision of language interfaces and graphical
computations. Finally, some areas are intrinsically too complex ever
to have single, general solutions. For such areas, a vague general
problem must be sharpened to make it computationally meaningful.
Examples are the simulation of random numbers and, possibly, gen-
eral fitting of nonlinear models.

b. Data Analysis and Computing

As a general preliminary to detailed discussions, it is useful to
characterize possible computing environments and the kinds of data
analysis likely to arise. Such questions affect the feasibility or
relevance of techniques to be discussed.

The data analysis may be characterized by such questions as:

(1) Is it primarily routine (consisting of specialized and
repetitive analyses) or primarily exploratory (unpredict-
able as to the kind of problem and the appropriate
response) ?

(2) Are the problems large or small, both in terms of the
volume of data and of the resources (personnel, comput-
ing facilities, etc.) available?

Exploratory analysis places greater emphasis on the flexibility and
extensibility of the computing facilities. Routine analysis allows

§1.b Data Analysis and Computing 3

greater emphasis on efficiency and ease of standard use of programs,
and permits greater effort to be made in refining computing pro-
cedures. Generally, routine analysis favors specialized systems,
while exploratory analysis favors general, open-ended support.

Small projects will not be as likely to undertake major new pro-
gramming efforts. The primary emphasis wilt be on quick and easy
access to reasonably appropriate computing tools. At the same time,
direct checking of results and adhoc revisions and interpretation will
be more feasible on small bodies of data. Larger projects may not
be justified in compromising the details of their analysis or their
computations, while large data sets always require great care in
checking for errors and misinterpretations. Greater control over the
details of computation will then be required.

A different characteristic of the environment is the general
style in which computing for data analysis is presented. In Section
2.b some criteria for evaluating individual algorithms and systems
are discussed. A more general characteristic is the contrast between
special-purpose statistical systems and general-purpose, nonstatistical
languages. The merits of these have been the focus of considerable
debate. The two extremes are a statistical system that replaces all
programming in general languages and direct programming in a gen-
eral language. Intermediate forms include statistical systems that
permit the kind of programming done in ordinary languages, and
programming in general languages with extensive support from sub-
routine libraries and other facilities. Special-purpose systems can
provide commonly used analyses or data structures as simple primi-
tives; initial and routine use is facilitated. General-purpose
approaches have advantages of extensibility and flexibility. In partic-
ular, the incorporation of new procedures written elsewhere is usu-
ally more straightforward.

In assessing various approaches to computing for data analysis,
it is relevant to consider changes in the form of user communication
with computers and changes in the population of potential users
since initial development of statistical systems. In the typical com-
puter facility until 1965, user communication was by an externally
prepared program, usually on punched cards, presented for a rela-
tively slow run (with several hours or more elapsing before obtain-
ing results). Such an environment discourages innovative, flexible
use of computer systems. Subsequent developments have led to
computer access via interactive terminals with essential support of
text editors and other non-numerical systems. Statistical

4 Introduction §1.b

computations also typically are executed more rapidly as well, either
in an interactive system, or by a spawned job with a short time to
completion. The new style encourages direct and innovative partici-
pation by data analysts in computing. A contemporary development
is the training of a generation of data analysts who had early expo-
sure to computing and who accept computer programming as a
natural expression of the analysis they intend to perform. These
developments are relevant to planning because better user commun-
ication and data analysts who are at ease with programming allow,
and often demand, broader and more flexible computer support.
Some restrictive package systems, for example, were suitable for the
earlier environment but needed to be revised to be acceptable subse-
quently.

For future planning, however, the best features of both
approaches should be sought. Building upon a widely available gen-
eral programming language (probably FORTRAN), and taking
advantage of high-quality existing algorithms, will provide a strong
problem-solving support. Convenient user interfaces, where
needed, may be built upon this basis, using modern techniques of
language design. (See Sections 2.d to 2.f.)

CHAPTER TWO

Programming

This chapter considers some questions about programs that
apply across most areas of technique. What good features should
programs have? How can competing algorithms be compared?
What principles underlie the design and writing of good programs?
What features of programming languages are relevant to computing
for data analysis? In the following sections, a few points are dis-
cussed that relate to these questions.

a. Structure of Computations in Data Analysis

The process of data analysis, whether or not it is carried out by
computer, has a basic structure that closely parallels the operation of
a computer program. The sequence of steps in each case involves
the same four components: the acquisition of external data (input),
the planning and definition of the analysis (programming), the exe-
cution of the analysis (calculation), and the display of resuits and
summaries (output).

These components define the areas that must be considered
when developing a computational capability for data analysis. At the
same time, they are each areas in which much development of com-
puting technology and methods has occurred. The provision of
effective data analysis requires some familiarity with recent develop-
ments in these areas. Later chapters present the important current
techniques in various specialized areas of computing. The present
chapter attempts to take a general look at the process of providing
computer programs.

General advice on the planning and implementation of statisti-
cal computing facilities should be given with modesty and caution.
Each organization differs in the goals and constraints applied to its
data analysis, in the relative priorities it assigns to these, and in the
time-scale on which these goals and constraints are to be considered.

6 Programming §2.a

At the same time, the resources available will also differ, in terms of
the number and skills of personnel, the quantity and scope of com-
puting hardware, and the extent and usefulness of existing pro-
grams.

Also, the computational requirements for data analysis differ
from, but still overlap with, the needs of other computer applica-
tions. Therefore, an approach that treats data analysis as if it were
the sole user of a computer system may overlook the benefits of
planned cooperation with other groups of computer users.

The approach to computers will certainly depend on all these
local conditions. However, there are useful general concepts to be
applied in assessing each particular case. By keeping such concepts
in mind, planners may achieve a more relevant and adequate facility
within their environment.

The first principle to establish is that the computational needs
are part of the whole process of data analysis. The effectiveness of a
particular computing tool, therefore, lies in its overall role in the
analysis to which it is applied. The costs and benefits must be bal-
anced in this broader context, not just in terms of the computing
itself. This principle, apparently self-evident, is quite difficult to
apply consistently in practice, as is shown by many of the examples
cited in later chapters.

The next questions to answer are then: "What good things can
computers provide in data analysis?" and "What difficulties and costs
can be associated with computing?" It is possible to give some gen-
eral, although incomplete, answers to these questions.

The benefits of good computing support for data analysis are of
great magnitude. While most of them (increased speed of computa-
tion, ability to handle larger data bases, the availability of new and
better algorithms) may be regarded as quantitative, they are often
sufficiently major to revolutionize the entire approach to data
analysis. In many applications, however, the full benefit of modern
computing methods will be obtained only when the traditional sta-
tistical methodology and concepts are rethought. Frequently, the
result is a more natural and unrestricted attitude to the methods
themselves, uninhibited by limitations that were originally imposed
by hand-calculation methods, and later came to be considered intrin-
sic to the methods themselves. A typical specific example is the

§2.a Structure of Computations in Data Analysis 7

conventional assumption of full rank (nonsingularity) in statistical
procedures such as linear regression, and the resulting problems due
to near-singularity (multi-collinearity). Once the linear model is
described in the natural, general framework of orthogonal bases, the
computational problems of general rank in linear models are by no
means insuperable. To exploit the computational methods fully,
however, one must consider the statistical implications of such ques-
tions as uncertain rank (see Section 5.f).

The costs of computing are more frequently discussed, at least
in the narrow sense of computer time or other quantifiable
resources. Section b gives some general comments on this topic,
and the remainder of the book contains discussions of the cost of
specific procedures. The extent to which such costs ought to be the
main concern in data analysis is questionable, however. For very
large, routine projects, computing efficiency may be the determining
factor. For other situations, particularly in exploratory work, the
other criteria discussed in Section b are often of greater importance.

b. Program Evaluation

The evaluation of any set of proposed computing tools can be
organized around four main headings:

1. usefulness,
2. reliability,
3. cost.
4. convenience.
Each of these provide a framework for planning and assement.

Usefulness. The most important requirement of a program or
computing system is that it solve a relevant and important set of
problems. If a particular set of problems provided the incentive for
the programs, one must first look at this local question of useful-
ness. The evaluation will require some care. For example, does the
program fully solve the problem, including provision of data acquisi-
tion and display of results where necessary? The new program need
not do ali this itself, but if it does not, communication between it
and other programs for this purpose must be straightforward, and if
the other programs do not already exist, the cost of writing them
must be included.

8 Programming §2.b

If the program was written for a continuing series of problems,
it will normally be designed around only the few examples currently
available (and frequently only a subset of these). Planners need to
consider the scope of the fill series before restricting the applicabil-
ity of the program design. If programmer, designer and data analyst
are different individuals, it is particularly useful that the first two
feed back their understanding of the program’s scope to the data
analyst before writing the program.

The broader aspects of program usefulness are sometimes
overlooked. The question here is whether the program will be easily
useful with, at most, straightforward modifications for other prob-
lems. Is the program designed so that it can be used for related but
distinet problems? 1Is it possible to understand the program and
modify it to apply to different problems? Can it be moved reason-
ably easily to a different environment, possibly on a different com-
puter system?

The reason for emphasizing this consideration is that real gains
can be made here. It is frequently possible to solve an immediate
problem with little extra effort (sometimes, in fact, with less effort)
in such a way that the general, long-term value of the programs is
greatly increased. To achieve this the larger context must be kept in
mind from an early stage of the planning. The programmer deeply
involved in details is less likely to see this context than an overall
planner slightly removed from the details. Where planner and pro-
grammer are the same person, this suggests that a conscious effort
should be made occasionally to step back from the immediate prob-
lem and consider the overall strategy. Sections ¢ and d discuss
several aspects of increasing program usefulness.

Reliability. The reliability or accuracy of computations and
the cost of alternative methods are more technical questions that can
only be answered relative to the current understanding of particular
computing problems. Estimation of reliability is a central theme of
numerical analysis, which is discussed in Chapter 4 and elsewhere.
A closely related concept is sensitivity, the change in the result of a
computation as a result of a change in the data provided to it.
Where data is uncertain, as nearly all observational data must be,
such analysis must become particularly important. Except for a few
relatively simple techniques, sensitivity analysis is not yet a well-
developed tool in scientific data analysis.

§2.b Program Evaluation 9

Different questions of reliability arise with respect to the
integrity of the data and the programs themselves. Statistical tech-
niques for detecting gross errors in data or for reducing their effect
on subsequent calculations have been developed for some of the
standard analyses (se Section 5.j). Computational procedures
designed to ensure the integrity of data have been included in many
data base management systems.

Cost. Cost estimates and cost comparisons have been
developed for many algorithms and is discussed frequently in later
chapters. There are two basic approaches to cost evaluation:
theoretical and empirical. The most desirable measures of cost
would seem to be actual cost, and for the more complicated pro-
cedures no other measures may be available. The relevant cost
measures will depend on the machine and the viewpoint of the user.
On a small or wholly dedicated machine with a single user the
natural measure is the elapsed time required to complete the job.
Even in so simple an environment, some qualifications are neces-
sary. The true cost of lengthy computations may be substantially
lessened if they do not require constant supervision. On small com-
puters that are normally idle at night, users are often ingenious at
inventing computing tasks that can be started and left to run
indefinitely. Such programs, it may be argued, run at very little
cost, however long they take. (Multiprogram systems, applying
similar logic, may provide a low cost, background, or deferred grade
of service, which runs essentially by use of otherwise idle
resources.)

On modern multiprogrammed systems, cost measures are
more indirect. The supplier of the computing facilities wishes to
obtain the most computing from the available facilities, by ensuring
an efficient allocation of resources among users. In a commercially
organized computing facility, the supplier will generally charge users
for their consumption of the various resources within the system
(central processor time, peripheral storage, input/output, printing,
etc.). In a purely commercial environment, this will be done so as
to realize a suitable return to the supplier. In a semicommercial
situation, as in a university or scientific establishment that runs its
own computer center and charges others in the organization for
computing, the goals are usually to obtain efficient use of the com-
puter and, perhaps, to distribute the cost of supporting the computet

10 Programming §2.b

facility among members of the organization in proportion to their
real use of it. These latter goals may conflict and the usual market-
place approach to pricing computer facilities does not automatically
guarantee efficiency in the use of the facility. Various alternative
schemes have been suggested for in-house computing allocation.
There is unlikely to be an ideal scheme for all circumstances, but a
key ingredient would seem to be responsiveness to actual usage and
an awareness of current or potential blockages in the flow of user
programs.

The user’s strategy in a market or semimarket environment
generally is to obtain as much of the computing he wants as possible
given his budget for computing resources. As a result, the cost of
alternative computational procedures or systems must be evaluated
in terms of the totality of resources required. A larger program that
executes faster may or may not be preferrable; similarly, the choice
between data management that uses more peripheral storage and
one that requires more frequent access to that storage will depend
on current pricing policies. This is part of the rub from the user’s
viewpoint. The flexibility in pricing that the supplier sometimes
needs to respond to varying demand may make it difficult for an
individual user to develop a stable efficient algorithm for some of
his major computations.

The topics we have just discussed have become significant
technical problems with the development of large, complex, mul-
tiuser computing systems. Simply measuring and understanding the
performance of such systems and analyzing the results of changes in
the systems or their pricing strategy may require sophisticated data
analysis. Such techniques have been labeled compumetrics. In fact,
complex computing systems provide interesting challenges for data
analysis: the data is abundant and significant relationships and pat-
terns are likely to exist, but the appropriate models and estimates
are frequently not obvious.

In addition to the ambiguities and instabilities mentioned,
empirical cost comparisons are obviously defined only for a particu-
lar machine and frequently change when the same procedure is used
with a different mixture of other programs, particularly in a mul-
tiuser environment. Designing or selecting algorithms for multi-
computer use requires some measures of cost that are valid gen-
erally. For this purpose, theoretical cost calculations may sometimes

