T & L %R

LICNN SIS

! L RRe A

Lateral Inhibition Neural Networks
for Classification of Simulated Radar Imagery

Charles M. Bachmann, Scott A. Musman, and Abraham Schultz
Code 5362, Airborne Radar Branch, Radar Division, Naval Research Laboratory
4555 Overlook Ave., SW
Washington, D.C. 20375-5000

January 8, 1992

Abstract

We investigate the use of neural networks for the classification of simulated inverse synthetic aperature radar
(ISAR) imagery. Certain symmetries of the artificial imagery make the use of localized moments a convenient
preprocessing tool for the inputs to a neural network. A database of simulated targets was obtained by warping
dynamical models to representative angles and generating images with differing target motions. Ordinary back-
ward propagation (bp) and some variants of bp which incorporate lateral inhibition obtain a generalization rate
of up to ~ 78% for novel data not used during training, a rate which is comparable to the level of classification
accuracy that trained human observors obtained from the unprocessed simulated imagery.

1 A Simulated ISAR Database

Our database consisted of simulated inverse synthetic aperature radar (ISAR) images of ships. Real imagery
1s a Doppler vs. range profile produced by the ship’s motion. Mathematically, the image shape depends on
the cross-product of the line of sight vector with the instantaneous angular velocity vector of the ship. The
resulting image exhibits the combined effects of the independent motions of the ship due to its roll, pitch,
and yaw. Our artificial database contains target silhouettes which simulate the rudimentary shape of a ship
In an image at different aspect angles and with varying degrees of roll, pitch, and yaw.

Although real imagery also has spectral characteristics, for the purposes of identifying the Perceptual
Class of & ship, general shape information of a silhouette is usually sufficient. By “Perceptual Class” we
mean the categories “Commercial/Auxilliary”, “Combatant”, “Landing Platform”, “Submarine”, and “Small
Craft.” For the purposes of this pilot study, we were interested in the determination of Perceptual Class.
Therefore, we chose to simplify the problem by creating simulated images which all had binary image intensity
levels.

We actually investigated a subset of the Perceptual Class problem: the ability of backward propagation
and variants of bp incorporating lateral inhibition to distinguish the difference between commercial/auxilliary
ships and combatants in the artificial database. For training, simulated images were presented to represent
a variety of different target aspect angles and motion parameters. Each of these frames was presented once
with the bow left and right. In figure 1, we show some examples of the kinds of image frames which we used.

The actual input to the network was the weighted rms image variation about the image center of mass in

each range bin:

;7 — E;(9))%pi;)
> 27 = Ei(3))pi5
where p;; is the nt®hsity ot the imgge in range-doppler cell i,j, and E;(j) = 2_; Jpij is the image center-of-
mass in range-bip LoF1guty 2 MwWe a sample image frame and the corresponding range-bin moments used

as input. Globajz{aunvaptanrigorpents are of somewhat limited utility for recognition tasks such as this,
which require mqre apgaied shape 19tormation (Park and Sklansky, 1990). Therefore, we use local range-bin

input; =

U.S. Government work not protecied by U.S. copyright. 1I-115

Figure 1: Examples of simulated binary ISAR images of a commercial/auxilliary ship. The
same ship is displayed at a variety of different aspect angles, and with varying degrees of profile
and plan component, which model the amount of roll, pitch and yaw present in the image.

8.8 ot
s

CaD, e Vet

Figure 2: (Left) An example of a simulated ISAR silhouette. The horizontal axis is range, the
vertical axis Doppler. (Right) The weighted rms variation about the image center of mass in each

range bin is used as the input to the neural network.

1I-116

Lad

-

moments to give more details about the structural shape. We also make this choice because of symmetry:

while features may change their scale and sign in the Doppler domain, they will remain constant in range.

Our database consisted of 4896 simulated ISAR image frames drawn from 21 different ships. We divided
the database into three subsets: one for training, a test set for monitoring generalization during the training
procedure (cross-validation), and finally a second test set for evaluating generalization after training. Details
of the composition of these data subsets are summarised in the following table.

L Table 1: Simulated ISAR Imagery Database |
Subset Total Ships # Commercial/Aux. | # of Frames # Commercial/Aux.
] # Combatants # Combatants

5 1020
Train 9 4 2108 1088
3 680
Monitor 6 3 1496 816
3 612
Novel 6 3 1292 680

2 Lateral Inhibition Neural Networks

Lateral inhibition has been studied in a variety of contexts, for example in unsupervised learning networks
(Cooper and Scofield, 1988; Intrator, 1990; Seabach, 1990), in reinforcement learning (Sutton, personal
communication) and dynamical models (Horn and Usher, 1990). Also, recent work (Giraud, Liu, bernard,
and Axelrad, 1991) has looked at networks with excitatory-inhibitory pairs of neurons.

In the context of backward propagation (Rumelhart, Hinton, and Williams, 1986; Werbos, 1974), Sandon
(1987) developed an ad hoc method for incorporating a linear competition between the error signals. At
a given level in the network, the error signal for a particular neuron was modified by subtracting out an
amount proportional to the sum of the error signals at the other nodes:

N
1
67 = 8 - = 2 - 67) (2)
i=1

Heuristically, it is appealing to allow competition between the error signals; however, such an approach does
not guarantee that the network will implement a gradient descent minimigation procedure. In contrast, we
have taken the approach of imbedding the lateral inhibition in the energy functional and carrying out gradient
descent on the modified energy functional. We accomplish this by introducing fixed lateral inhibition in the
forward pass of the data through the network. With this approach, we have the advantage of being certain
that we are actually carrying out a minimization procedure by gradient descent.

In our network, during the forward propagation of the pattern, the linear net input is computed for each
cell, then the lateral inhibition of these inputs is computed, after which the nonlinear sigmoid is applied to
the result to compute the firing rate of each cell. Therefore, the feedforward equations for pattern s are:

Nn—l

5:'(”) = Z w’(';_l)a;"(n-l) + ¢$n) (3)
j=1

5™ = o3 - uM Y &™) @)

i#k

where & ") is the net feedforward input, 5:'(") is the cell activity, and o(z;A) = ;=== is the nonlinear

sigmoid input-output function. Here, u(® = N‘.’;(—:—)i- is the fixed parametric inhibition in layer n, and N, is
the number of cells in that layer. Figure 3 compares the lateral inhibition architecture with that of ordinary
backprop. With these modifications, the energy function to be minimiged is defined in terms of the inhibited
outputs of the final layer of the network. When we take the gradients of the modified energy functional with
respect to the synaptic weights, we find that the ordinary backprop error signals, 5™

5; , must be replaced by
inhibited error signals, 35?), of the form:

last layer synapses :

1I-117

A O & (5)
k2i
with
O = (- SN - 5 (6)
interior synaptic layers :
B = AMEO - Y T ul))
k j#

and the modification rule is written in terms of the inhibited error signal and inhibited neuronal input:

6{, n ~
A:(wgi‘)) = “"I——aw((:l)) = n&EbH)O:'(") (8)
ki

where £, = Zf:l 3 6;'("') ~7¢)? is the LMS network error. Because the strength of the inhibitory connections
is fixed, the inhibition appears parametrically in the expressions for the modified error signals. In fact, we
can think of the inhibition equation as being equivalent to inserting a layer of non-modifiable connections
Lg‘) = 6‘(;(”"""") — (1 — g{fromecker)y \(n) between each layer of modifiable connections wg.’) (Sg(""“k")
is the Kronecker delta, or identity matrix). This fixed architectural constraint allows competition between
the cells in a layer to represent particular features in the data.

Notice that the last layer error signals are equivalent to the ad hoc formula used by (Sandon, 1987); this
layer is looking at the spatial difference in how close the output layer cells are to their respective targets.
Our model differs from Sandon’s in the interior layer: error signals for interior layers are propagated back
across synaptic vectors which inhibit each other laterally. When u(*) — ;‘}—‘, each cell is comparing itself to
the average of all of the other cells in both the forward and backward passes. In contrast, as u(®) — 0, the

algorithm reduces to the ordinary backprop network.

Output Layer

(clatsg'lﬁcau'on)

Hidden Layer
Input Layer

Figu.re 3: (Left) Ordinary backprop architecture. (Right) A backward propagation network
with lateral inhibition. After the linear input in a layer is computed, the neurons laterally inhibit
one another and then the nonlinear sigmoid is applied to obtain the actual cell response.

3 Results

3.1 Benchmarks for Backprop and Lateral-Inhibition Variants

We considered both three- and four-layer architectures (one and two layers of hidden units respectively). In
the end, we settled on a three-layer architecture as the best configuration. Experiments with five hidden
units revealed poor generalization to novel data. However, we obtained good generalization with seven or

eight hidden units. More cells led to overfitting. Amplitudes of some sample first layer synaptic vectors are
shown in figure 4.

We chose a small step-constant 7 = 0.1 with moderate momentum « = 0.6 for the experiments.
We trained the networks to distinguish between artificial images of combatants and those of commer-
cial/auxiliaries as described above. Synapses were saved in a buffer whenever the generalization on the
monitoring data set improved. The synapses in this buffer, representing the best level of generalization

1I-118

A *
)

A

-~

oy |

i
— ¥ o -

w.,'&, t
~d R)
| z{

)

Figure 4: Examples of Amplitude plots for the elements of two first-layer synaptic vectors after
training. Samples are from a 256-7-2 network configuration.

attained on the monitoring data set were eventually tested at the conclusion of each trial on the the third
subset of the database as described above. The generalization results in the table are for this third inde-

endent database. This method of training was designed to compensate for the overtraining problem that
15 frequently encouniered with backprop. gy buffering the synapses only when generalization improves we
lessen the chance that the network will overfit the data which often happens in the later phases of training.
Yuch a tralning approach has been used by (Intrator, 1990) with ECM networks (Bienenstock, Cooper, and

Munro, 1982) and in ordinary backprop (Bachmann, 1990).

T Teble 2: Nourel Netwerk Generalization
777 " Clessincation: of Range-Bin Moments of Gimulated 1SAE Imagery
T'wo-Class Problem: Combatants vs. Coromercial/Avxilliary Ships
om trigls Mean Mean Best
(Inhibition) Combat. Commerc. Combined Combined
0.0 20 840+ 58% 545%£58% 65.2% 5.2% 77.6%
0.15 20 796 £59% 59.3+56% 69.44 4.0% 76.7%
0.25 20 8254+ 74% 550+80% 688+ 34% 76.4%
1.0 20 788 +68% 565+ 68% 67.6+53% 77.9%

3.2 Understanding the Results

There is not a significant difference in generalization over the range of inhibition levels which we explored
with the neural networks. We feel that ordinary backprop is probably doing as well as can be expected given
the limited number of ships in the database. Also, some of the viewing angles were extreme and therefore
difficult to classify. Also, 2 number of frames had very little profile component in the image and therefore
were not easily categorized. Furthermore, the initial representation using range-bin moments loses some of
the shape information and could be improved. Obtaining generalization of up to ~ 78% (“Best Combined”
column in Table 2), therefore, is a good result. »))

"To better understand our results, we tested human observors trained in ISAR sh@ﬁ classification, asking
them to classify the simulated binary images. A strict comparison is not really possible since our networks
were trained with only a couple of thousand frames, whereas some of the people participating in the human
tests had many years of experience in ISAR classification. Furthermore, the human observors looked at
the raw images, not the range-bin moments. Nevertheless, their performance can give an indication of the
difficulty of the problem. One hundred patterns were selected at random from our simulated database. The
human observors were asked to classify the ships as either “commercial/auxilliary”, “combatant”, or “other
(submarine, landing platform, or small craft)”. Even though there were no submarines, landing platforms,
or small craft present in the simulated images, this third perceptual category was provided as a means of
elstxma.tmg how often combatants and commercial / auxilliary ships would be confused with other perceptual
classes.

Table 3: Performance of Human Observors
Classification of Simulated ISAR Images (silhouettes)
Obaservor % Correct % Misclassified as “cther” % Undecided
Combat. Commerc. Combat. Commerc. Combat. Commerc.
AL 709 % 42.2% 18.2 % 378 % 0% 0%
WL 83.6 % 31.1% 12.7% 20.0 % 1.8 % 22%
M 89.1 % 48.9% 55 % 13.3 % 5.5 % 156 %
LB 92.7% 60.0% 55 % 15.6 % 0% 0%
DD 89.1 % 66.7% 7.3% 6.7 % 0% 0%
MB 98.2 % 80.0% 1.8% 2.2 % 0% 0%
Means: 87.3+93% 548+ 176% 85+59% 159+ 124 % 1.24£22% 3.0+£156%
Both: | 71.0 % | 122 % 21 %
Best: i 89.1 % [20% 0%
II-119

Some of the variation can be accounted for by degree of experience. It is interesting, however, that
the most experienced human observor, DD in the table, did not obtain the best score. Nevertheless, this
experiment provides a baseline for the degree to which the perceptual class of the simulated image silhouettes
can be identified.

The results which we have obtained for the neural networks for a range of randomly chosen initial
starting conditions appear to have a similar mean classification accuracy, although we can not make a strict
comparison because we have not allowed for an “other category” in the neural net experiments. An expanded
database of “other” simulated targets will be useful in future work. We also plan to develop an on-line version
of the simulation which will present randomly chosen views of the ships in the database to the neural network.
Work on hybrid networks combining unsupervised and supervised learning algorithms is also planned.

4 Acknowledgement

We wish to acknowledge Dave Drake for assisting us in the creation of our artificial radar database and to thank the other
members of the Airborne Radar Branch at NRL who participated in the human classification test. The theoretical resuits on
lateral inhibition were completed at the Center for Neural Science of Brown University during the fall of 1990 by one of us
(Bachmann) under the support of the National Science Foundation (grant # EET 8719102), the Army Research Office (grant #
DAALO03-88-K-0116), and the Office of Naval Rescarch (grant # N00014-88-K-1316). The remainder of the work, including all
of the simulations, was completed at the Airborne Radar Branch, Naval Research Laboratory, under the support of the Office
of Naval Research (53-1501-0) and (53-1501-1).

References

[1] Bachmann, C. M., Learning and Generalization in Neural Networks, Ph.D. Dissertation, Brown University, Department
of Physics, May 1990.

[2] Bienenstock, E. L., Cooper, L. N., Munro, P. W. Theory for the Development of Neuron Selectivity: Orientation Specificity
and Binocular Interaction in Visual Cortez, The Journal of Neuroscience, Vol. 2, No. 1, pp. 32-48, January, 1982.

(3] Cooper, L. N., Scofield, C. L. Mean-Field Theory of a Neural Network, Proceedings of the National Academy of Sciences
USA, Vol. 85, pp. 1973-1977, March 1988, Neurobiology.

(4] Horn, D. and Usher, M., Ezcitatory-Inhibitory Networks with Dynamical Thresholds, International Journal of Neural
Syustems, Vol. 1, No. 3 (1990), pp. 249-257.

(5] Intrator,N.I. Feature Eztraction Using an Unsupervised Neural Network, in Proceedings of the 1990 Connectionist Models
Summer School, Toureteky, D. S., Ellman, J. L, Sejnowski, T. J. (eds.), San Matco, CA: Morgan Kaufmann.

(6] Giraud, B., Liu, L. C., Bernard, C., Axelrad, H., Optimali Approzimation of Square Integrable Functions by a Flezible
One-Hidden-Layer Neural Network of Ezcitatory and Inhiditory Neuron Pairs, Neural Networks, Vol. 4, pp. 803-815, 1991,

(7] Park, Y., Sklansky, J., Automated Design of Linear Tree Classifiers, Pattern Recognition, Vol. 23, No. 12, PpP- 1393-1412,
1990.

(8] Rumeihart, D. B., Hinton, G. E., Williams, R. J. Learning Internel Representations by Error Propagation in Parallel
Distributed Processing, Explorations in the Microstructure of Cognition, Vol. 1, Rumethart, D. E., McClelland,
J. L. (eds.), pp. 318-362, MIT Press: Cambr:dge, Mass., 1986.

[9} Sandon, P., Lecture on Extensions to Backward Propagation, G.T.E. Connectfest Conference, Waltham, Mass., Sept. 25,
1987.

(10] Seebach,B. S., Evidence for the Development of Phonetic Property Detectors in ¢ Modified BCM Neurel Network without
Innate Knowledge of Linguistic Structure, Ph. D. Dissertation, Brown University, Program in Neural Science, 1990.

[11] Werbos, P. J., Beyond Regression: New Tools for Prediction and Analysis in Behavioral Sciences. Ph.D. Thesis, Harvard
University, 1974.

II-120

£

Dynamic Learning
Using Exponential Energy Functions

Magbool Ahmad and Fathi M. A. Salam

System and Circuits & Artificial Neural Nets Laboratories
Department of Electrical Engineering
Michigan State University
East Lansing, MI 48824
Phone: (517)-355-7695 Fax: (517)-353-1980
E-mail: salam@egr.msu.edu

0 ABSTRACT

We employ a conunuous-time gradient descent weight update law for supervised learning of feedforward
anificial neural networks due 1o specific advantages over its discrete-time counterpart. We also employ an Exponen-
ual cnergy function in the update law. We analytically show that this energy function would speed up the learning
dynamics and ensures faster convergence to a useful minimum. The dynamics would "skip” minima which are at
higher encrgy levels and converge to one at a lower energy level. We also describe software implementation of the
lcarning dynamics based on the Lxponential energy function. Various supporting simulations on the XOR and char-
actar recogmuon problems are also included.

t INTRODUCTION

Artificial neural networks are mathematical models, originally designed to mimic some of the functions of the
nervous systems of higher animals. Carefully formulated and designed, they can be implemented via software using
conventional digital computers or hardware using digital/analog VLSI. We resort to the first approach with a view: 10
finally implement these artificial neural models in digital/analog VLSI.

We focus on the feedforward artificial neural networks (FFANN) using back-propagation architecture.
Without question, back-propagation is currently the most widely applied neural network architecture for FFANNS.
This popularity primarily revolves around the ability of back-propagation networks to learn complicated multidi-
mensional mappings.

The automatic learning rules for FFANN give them most of their unique capabilities. The Generalized Delia
Rule (GDR) proposed by Rumelhart et al [1], which is an error back-propagation (EBP) learning rule, has been
popularized since the publication of their work in 1986. Following the presentation of an input/outpu! pattern
p =1.2,..P, the rule for updating the weight wy;, connecting the jth node in a layer to the kth node in the subse-
quent layer, is given by the difference equation [1}]

AW&/-“-‘*"YVW"E, 1.1

where y is a constant known as the learning rate and V., is the partial derivative with respect to wy; . E is the
energy function and is usually given by the sum-of-the-squared error function

=%;;e‘m2, (1.2)

Where €pn = ln—ypn ., While tx and y,, are, respectively, the nth components of the desired and the actual output
vectors for input/output patern p. The update (1.1), however, has been known to be (a) extremely slow if it con-
verges, and (b) sometimes it does not converge and may even generate oscillations.

Describing the update law as a system of differential equations [2-5] in the form
wy ==YV, E, (1.3)

has its advantages over the system of difference equations. In particular, being a continuous-time gradient system,
the learning rule (1.3): (a) ensures convergence to only minima, i.e., stable equilibria, (b) prevents the existence of
oscillations and complicated behaviors, and (c) lends itself to natural implementation via digital/analog LSI/VLSI
circuits [2-5]. ’

The choice of the energy function specifies the back-propagated error update law. It also determines the lcarn-
ing performance in the sense of the speed of convergence and the size of domains of attraction of the stable equili-
brium points in the weight space. For the faithful implementation of the update law (1.3), the learning rate y and the
time step Ar of the integration routine should be small enough to ensure that the essence of the continuous-time
weight update is not lost. However, as a consequence of the small value of Y.Ar (a) the Jearning is slow and (b) the
algorithm converges to the nearest local minimum -- which in most cases may not be useful.

0-7803-0559-0 /92 $3.00 © 1992 [EEE 11-121

One approach in speeding up the learning is to choose a suitable energy function £. One can either choose the
Cauchy energy function (6] given as

¢ = 2 [T T (1+€m), (1.4)
P L3
the Polynomial energy function [7] of order r, which is
EF=a 3 Y (lepml +b), (1.5)
p A

with a and b any real constants or any other energy function that helps speeding up the learning process. While the
Cauchy {6] or the Polynomial (7] energy functions speed up the convergence to their local minima, the values of
these minima may not be satisfactory from a practical point of view.

One may consider increasing the value of the learning rate ¥, to be an immediate solution to the above prob-
lems. This may not work in all the cases. With a large value of v, while we increase the tendency of "skipping” over
local minima and increasing the speed of convergence, we also make it prone 10 skip desirable minima and delay the
convergence.

There is a need that the leaming algorithm should skip the undesirable local minima and converge 10 a
minimum which ensures reasonably smaller error value. An aspect of this need is captured by the simulating anneal-
ing approach. However, the simulating anealing lacks precision in the sense that the approach may not cease at or
near global (or acceptable) minima. In this work we tackle the problem of skipping the undesirable local minima
and increasing the learning speed to achieve an acceptable set of weights of the network. We propose the Exponen-
tial energy function of the form

F =exE, (1.6)
for the weight update law (1.3). Here x is any positive real number whose determination is discussed later.

The paper is organized as follows. In section 2 we include the learning dynamics of the update law (1.3) using
the Exponential energy function F. In section 3, we compare the learning dynamics of the weight update law (1.3)
using the Exponential energy function # and a simple energy function £. £ can be the Gaussian, the Cauchy, the
Polynomial or any other suitable energy function. Software implementations of these derivations discussed in scc-
tion 4 are then used to train a FFANN. As illustrative examples, we specialize the software to solve the XOR and
the pattern recognition problems. Simulation results are presented in section S and finally we summarize our conclu-
sions in section 6.

2 THE LEARNING DYNAMICS

We derive the learning dynamics for the Exponential energy function (1.6). Consider a muitilayer FFANN
having an input layer, m hidden layers and an output layer. We index the input through the output layers by
IN Hq,.HjH,.Hn,O consecutively. The input layer is assumed to have / nodes with indices 1,..,i,../ and the
output layer has N' neurons with indices 1,..,n,..N. The hidden layers are assumed to have sufficient number of neu-
rons to perform the assigned task satisfactorily (8-10]. The last hidden layer H,, is assumed to have M nodes which
are indexed 1,..,m,..M. In general, any hidden layer H; and its subsequent hidden layer H, is assumed to have J
and K nodes, which are indexed 1,..j,.J and l,..Jc,..J(respectively. The neurons in any particular layer, as dep-
icted in Figure 1, are assumed to have no lateral or feedback connections.

Letp =12......P, be the index for the input-output patterns used in training the network. Consider the lcarn-
ing dynamics of the weights using the energy function (1.2), (1.4) or (1.5), specifically

w=-yV,E. 2.1
Now consider the learning dynamics of the weights using the Exponential energy function (1.6), specifically
we=-yV_F, (2.21)
=-yxe¥ V,E, (2.2ii)
=-yx V.E, (2.2iii)
=L w, (2.2iv)
where y is the skipping factor and is defined as
X =xeE, (2.3)

Observe that y is constant at any particular step of the integration and varies exponentially with the output
crror (energy) from one step to another. As the leaming proceeds, the output error (energy) £ decreases, the skip-
ping factor y also decreases exponentially. Therefore the likelihood of skipping the local minima which are at
higher energy levels are greater than skipping the local minima at lower energy levels. Here w gives the leaming
dynamics for the update law (2.1). These learning dynamics have already been explored in [2]-(7].

1I-122

3 ANALYTICAL COMPARISON OF THE LEARNING DYNAMICS

We compare the Exponential leamning (2.2), with the simple learning (2.1). In order to do so, we first outline a
criterion for the leaming performance in subsection 3.1 and then compare the learning dynamics of weight update
law (1.3) using a simple energy function (1.2), (1.4) or (1.5) and the Exponential energy function (1.6) in subsection

2.

3.1 A criterion for the learning performance

To compare the learning dynamics given by (2.1) and (2.2), we define the performance criterion delineated in
the following procedure. First we consider V := E as a candidate Liapunov function [11]. Then, we calculate the
denvative of V along the wrajectonies of the system (2.1) -- denote this derivative by V. Similarly, we caiculate the
derivative of V along the trajectories of the system (2.2) -- denote this derivative by V*. Now if V¢ —V <0, then
we say that the learning performance of the second system is "faster” than or at least is the same as the first sys-
tem. This is motivated by the fact that V¢ — V gives the projection of the rate of change of the difference in the
weight vectors, say (W — W), along the divergence vector Vy V. This we take as a measure of speed of updating
the weight-vectors difference (W¢ - W), which in tum is equivalent to the comparative speed in updating the
weight vectors W¢ and W.

Formally, we observe that
Ve -V =VpV (W -W), (3.1
where W¢ and W denote vectors containing all the corresponding weights. Equations (2.2) give the componenis of
W and equations (2.1) give the components of W.
3.2 Comparison of the learning dynamics

We analyze the learning performance of weight update law (1.3) using the Exponential energy function by
comparing the learning dynamics of systems (2.1) and (2.2) with the criterion outlined in subsection 3.1. In order o
{formally compare the learning performance due to a simple and its Exponential energy functions, we state

Theorem 1: Consider a candidate Liapunov function V := E given by equation (1.2), (1.4) or (1.5) corresponding
to the Gaussian, the Cauchy or the Polynomial energy function. Let V be the derivative of V along the the trajec-
tories of (2.1) and V¢ be the derivative of V along the trajectories of (2.2). Let the skipping factar x > 1. Then the
learning performance of system (2.2) is "faster” than or at least is the same as system (2.1).

Proof : In order 10 analyze the learning performance, let’s caiculate V¢ - V.
Ve-V=VgV. (W -W),
=[.VWE.]. = Y(.XVWE.)T - [.VL,E.]), (3.2i)
2
=-YZ[X- 1] [v,,s] . (3.2ii)
Given that 3 > 1, the update law (1.3) using the Exponential energy function (1.6) improves (or at least does

not dcieriorate) the learning performance. The skipping factor) 2 1 imposes the following restriction on the
energy function as depicted in Figure 2. ,

Inx
14
1
. 20 '
1
15— !
I
'
E ‘0—4 '
. '
5 _| '
'
. (100 SRR - ..
I
. -5 —_
! ! ! !
1 0 1 2 3 4
x
Figure 1: A model of fecdforward Antificial Neural Network. Figure 2: Graph representing the relationship (3.4).

11-123

We observe that for non-positive x the system does not behave as a gradient descent system. For positive x
the learning performance only improves if for a certain value of x, E has a value that satsfies the relationship
(3.3). We also observe that if x 2 1, the learning with the Exponential energy function always improves.

4 SOFTWARE IMPLEMENTATION OF THE LEARNING DYNAMICS

The weight update law (2.2) is implemented into computer software using the C-language on Sun SPARC sta-
tion. Fourth order Runge-Kuna integration routine is used for the integration of these update laws. A stopping cri-
terion ©, was set to determine if the system has converged to a solution. The parameter @ was defined as

w:=3 |Aw], @n =

where w are all the weights in the network and
Aw =w({+Al1) - w(t). 4.2)

The term At is the time step chosen for the fourth order Runge-Kutta integration of the update laws. An error cri-
terion & was used to characterize the training: the lower the value of the error, the better is the training. The (output)
error parameter is defined as

€= ; z": Epn 2. (4.3)

Note that this error parameter is exactly the Gaussian energy function. The weights of the network can be ini-
tialized by giving their values or selecting randomly by a random number generator. The training simulator, using
the Runge-Kutta integration routine reads the input data from an input file, which provides the values of the time
step At, the learning rate ¥, the error criterion &, the stopping criterion ®, the energy function parameter K, the net-
work structure, the training patterns and the corresponding target values. The training is terminated when either the
stopping criterion ® or the error criterion & is achieved. The simulator writes the intermediate or/and the final values
of the network weights or/and other parameters into an output file.

5 SIMULATIONS

The training capability of the software simulator, using the Exponential and the simple energy functions. is
investigated and a comparison is drawn. In the following we simulated two problems of different computational «
complexity: the XOR and the arabic numerals (0-9) recognition problem. Simulation results for both of these prob-
lems are reported in section 5.1 and 5.2.

5.1 The XOR problem r

The prototype FFANN used to solve the XOR problem had two passive input nodes (a passive node simply
transmits the input (o its output), two hidden nodes and one output node. The network was fully connected and
wei‘;ghts were initialized randomly by a random number generator. The value of any initial weight w is such that
~09<w <£09.

We assume that the network has converged when the stoppage criteria < 0.0001 is achieved. In all the simu-
lation cases, the network converged to a local minimum. A comparison of 2 different sets of initial conditions are
illustrated in Figures 3, 4 and 5. In these figures, we compared the learning dynamics of the update law (2.1) using
the Gaussian , the Cauchy and the Polynomial energy function respectively, with the update law (2.2) using the
Exponential energy function with K equal to 1 and 1.8. In all of these simulations ¥ and At are chosen to be 1 and
0.1 seconds, respectively.

1

error 0.5 —

I I I I
-0 5000 10000 15000 -0 5000 10000

set # 1 - iterations set # 2 - iterations

Figure 3: Comparison of the Exponential (=1, 1.8) and the Gaussian learning. The Gaussian is represented by (...) *
whereas the corresponding Exponential (x=1, 1.8) is represented by (---) and (___) respectively.

1I-124

-~

1 - .. 1.2 —
ermor 0.5 o g |t
0 - !""--... 0.6 _‘1 L_ e
1 I T I I f | i]
-0 5000 10000 15000 -0 2000 4000 6000 8000

Figure 4: Comparison of the Exponential (x=1, 1.8) and the Cauchy learning. The Cauchy is represented by (...)

set# 1 - iterations

set # 2 - iterations

whereas the corresponding Exponential (x=1, 1.8) is represented by (--) and (___) respectively.

1

error (0.5 —

-0

.......

-0

| r 1
1000 2000 3000 4000

set # 1 - iterations

ermor

0.5

-0

\e

1 \

....................

1
0

r i I |
1000 2000 3000 4000 5000

set # 2 - iterations

Figure 5: Comparison of the Exponential (x=1, 1.8) and the Polynomial learning. The Polynomial is represented by
(...) whereas the corresponding Exponential (x=1, 1.8) is represented by (---) and (___) respectively.

In the case of set # 1, the training achieved excellent results. In case of set # 2 the network was stuck in an
undesirable local minimum with an error value equal to 0.5. We observe that for set # 2 when x =1, the skipping
factor was not large enough to skip the local minimum. But when k was chosen to be equal to 1.8, we observe that
the weight update law (2.2) skips the local minima and converges to a desirable minimum (Figure 5). This behavior
persisted for numerous case studies.

5.2 The Character (Arabic Numerals) Recognition problem

We decompose the character recognition problem into two parts: (1) feature extraction and (2) classification.
We tackle the problem of feature extraction using a two layer feedforward artificiai neural network (FEANN) and
that of classification using an additional layer network. The two networks are concatenated, the feature extraction
network followed by the classification network. The network structure is described in detail in [12].

We have collected 100 different fonts of Arabic numerals (0-9) from printed material [13]. Each of these
printed fonts were scanned using a SC-7500 Toshiba scanner and was stored as "Tiff" file. These files have subse-
quently been converted to "Hips” format which could easily handle binary data. The pixel image of various digits in
different fonts were then obtained from the formatted Hips files.

The images of these fonts were stretched appropriately to fit within a pixel window of 17x15 resolution whilc
leaving a small margin on all sides. With this preprocessing, we also achieve scaling invariance of the characters 10
some extent. The grey level of these pixels were set to be 0 or 1. The collected fonts included roman, bold and italic
versions of different classes.

The feature extraction and the classification networks can be trained together or separately. We trained thc
two networks separately with a view to achieve the following advantages:

(1) The feature extraction and the classification networks can be viewed as two separate modules,
(2) The feature extraction being fully trained on a large data-base and the classification network can be quickly
trained on the data-base when new fonts are added. By doing so we enhance the character recognition capa-

bility of the network as demonstrated in {12).

Half of the data-base was used as set 1 and the other half as set 2. We trained the feature extraction network
with set | and update law (1.3) using the Gaussian (1.2) and the Exponential (1.6) energy functions. In all the train-

ing simulations the value of A¢ and y were chosen to be 0.0005 and 1. k parameter of the Exponential energy tunc-
tion (2.2) was chosen to be 0.004 (the initial error value being in the range of 4000 to 5000).

-125

We assume that the network has converged when the stopping criterion < 0.15 or the error criterion £ < 400
is sausfied. For the Gaussian energy, learning was terminated when the stopping criterion @ was achieved where as
for the exponential energy, leamming was stopped when the error criterion was achieved. The network achieved
100% recognition results for (the training) set 1. After the network was trained with set 1, it was tested with set 2.
The error(s), number of steps to converge and the character recognition performance is reported in Table 1. We
observe that the Exponential Gaussian outperforms simple Gaussian learning in terms of error criterion and number
of computer steps. The generalization capability can further be enhanced by appropnately using the classification
network [12].

Table 1
|___energy function 14 steps correct incorrect reject
Gaussian 526.25 16205 92.6% 3% 44%
Exponential 399.96 10598 92.4% 2.6% 5%

Table I shows error(s), the number of steps at convergence and the character recognition results when the Gaussian
and its Exponential energy functions are used for training.

6 CONCLUSION

We have considered a class of software implemented FFANNs and addressed supervised learning using
conunuous-ime weight update law. A solution Lo overcome the problem of convergence to immediate local minima
i1s presented. We proposed the Exponenual energy function to be used in the continuous-time weight update law. We
have analytically shown that this will speed up the convergence to a useful minimum at lower energy level in com-
parison with the usual learning scheme. We also present the leaming dynamics and the software implementation of
this update law. Extensive simulation on the prototype XOR problem confirm the theoretical results. we have also
used the Exponential learning for a character recognition problem and have shown that it considerably improves the

learning speed.

Acknowledgment: This work is supported in part by ONR Grant N00014-89-J-1833, the Michigan Research
Excellence Fund (REF), and NSF Grant ECS-8814027.

References

{1]. D.E.Rummelhan, G. E. Hinton and R. J. Williams, Learning internal representations by error propagation,
in Parallel Distributed Processing: Explorations in the microstructures of cognition, Cambridge, MA: MIT
Press, vol. 1, pp. 318-362, 1986.

(2]. F.M. A, Salam, Neural Nets and Engineering Implemeniations, key address at the 31st Midwest Symposium
on Circuits and Systems, St. Louis, Missouri, August 10-12, 1988.

(3). F. M. A. Salam, Artificial Neural Nets: Basic Theory and Engineering Implementatons, Department of
Electrical Engineering, Michigan State University, East Lansing, MI 48824, October 1989.

[4]. F.M. A. Salam and M. R. Choi, An All-MOS Analog Feedforward Neural Circuit with Learning. 1990 IEEE
International Symposium on Circuits and Systems (ISCAS), New Orleans, Louisiana, May 1-3, 1990.

(5]. F. M. A. Salam, Learning Algorithms For Ariificial Neural Nets For Analog Circuit Implemeniation,
Proceedings of the 22nd Symposium of the Interface, pp. 169-178, May 1990.

(6]. M. Ahmad and F. M. A. Salam, Supervised learning using the Cauchy energy function, submitied 1o 2nd
International Conference on Fuzzy Logic and Neural Networks.

{7]. M. Ahmad and F. M. A. Salam, Error back-propagation learning using the Polynomial energy function. sub-
mitted 10 4th [EEE International Conference on System Engineering.

(8]. M. Arai, Mapping abilities of three layer neural networks, Intemational Joint Conference on Neural Net-
works, vol. 1, pp. 419-423, 1989.

[9]. G. Mirchandni and W. Cao, On hidden nodes of Neural Nets, IEEE Transactions on Circuits and Systems,
vol. 36, No. 5, pp. 661-664, May 1989.

{10). S. C. Huang and Y. H. Huang, Bounds on the number of hidden neurons in multilayer percepirons, 1EEE
Transactions on Neural Networks, vol. 2, No. 1, Jan. 1991.

(11]. H. K. Khalil, Nonlinear Systems, Macmillan, 1991.

[12]. M. Ahmad and F. M. A. Salam, Feedforward artificial neural network structure for character recognition, 1o
appear in the 29th Arinual Allerton Conference on Communication, Control and Computing, October 1991,

[13). F.Lambeny, Letter forms, Hasting House Publishing, New York. 1964.

11-126

)

A Convergent Neural Network Learning Algorithm

Zaiyong Tang and Gary J. Koehler
Dept. of Decision and Info Sciences
University of Florida Gainesville, FL. 32611

Abstract

A globally guided backpropagation (GGBP) training algorithm is presented. This algorithm
is a modification of the standard backpropagation algorithm. Instead of changing a weight wi
according to the partial derivative of error, E, with respect to w;j, we try to minimize E in the
output space. The change in weights I¥ is computed based on the desired changes in the output
O. The new algorithm is an analog to backpropagation with a dynamically adjusted learning
rate, . This learning rate changing scheme avoids the problems associated with heuristic
learning rate adjusting method. Two main advantages of GGBP are (1) fast learning speed,
and (2) convergence to a global optimal solution.

1 Introduction

Backpropagation (BP) is one of the most widely used learning algorithm for multi-layered feed-
forward neural networks (le Cun, 1988). The popularity of BP arises from its simplicity and
successful applications to many real world problems. It is commonly recognized, however, that
BP has some inherent shortcomings. Two of the often cited BP shortcomings are (1) slow or no
convergence, and (2) the possibility of getting stuck in local minimum solutions.

There has been a great research effort devoted to overcome the first problem. A number of
local acceleration heuristics are discussed in Jacobs (1988). Other approaches to improve the speed
of convergence include the use of second order information of the error surface such as Newton’s
method, conjugate gradient methods (Moller, 1990; Becker and le Cun, 1988). Those improvements
on backpropagation often increase the learning speed significantly in terms of training epochs at
the cost of an increased computation effort.

Few researchers have considered the second problem of BP. Empirical results have shown that
with ample hidden units embedded in the network, BP can usually escape a local minimum (Rumel-
hart et al., 1986) probably due to large degrees of freedom. However, increasing hidden units in
the network may not be an appealing idea, since an unnecessarily large number of hidden units
is likely to decrease the generalization capability of the network (Kruschke, 1989), and may cause
overfitting problems.

In this paper we propose a modification to the standard backpropagation algorithm. The
modification, while retaining the simplicity of the standard BP, introduces two nice properties: (1)
there is a training time speed up, and (2) convergence to global optimal solution is guaranteed. We
start with a briefly review of the standard backpropagation.

2 Backpropagation (BP)

The backpropagation leaning algorithm was introduced for feed-forward neural network training by
Rumelhart et al. (1986) (although the basic idea can be traced back to 1969 (le Cun, 1988)). In a
feed-forward network, the neurons (processing units) are arranged in layers. The input units simply
pass on the input vector X. The units in the hidden layer and output layer are called computation
units. Each computation unit has a transfer function, f, which is often chosen to be the sigmoid
function.

0-7803-0559-0 /92 $3.00 © 1992 [EEE 1I-127

A feedforward neural network works by training it with known examples ((X,T') pairs) where
X is an input and T the desired ouput results from X. A random sample X, is drawn from the
training set {X,|p = 1,2,..., P}, and fed into the network through the input layer. The network
computes an output vector O, and compare it to the training target T,. An error function is defined
based on the difference between O, and Tp,. A commonly used error function is the sum of squared
errors (SSE) function. The error computed from the output layer is back-propagated through the
network, and weights are modified according to their contribution to the error function (for BP
details, see Rumelhart and McClelland, 1986).

Note that although epoch training (Updating weights after presentation of all training patterns)
ensures convergence of a BP solution, the solution may be a strict local minimum. If the local
minimum error is larger than the stopping criterion, then BP fails to obtain a solution. The
need for global optimal solution to the feed-forward neural network motivates the globally guided
backpropagation algorithm.

3 Globally Guided Backpropagation (GGBP)

3.1 The Idea

One of the main shortcomings of BP is the possibility of getting stuck in a local minimum solution.
The error surface of BP networks in weight space is generally very complicated. On the other hand,
the error surface of the BP network in the output space is quite simple. If we use a sum of squared
error function, E, the error surface is convex quadratic in the output space. Minimization of the
quadratic function is easy. The unique local minimum of F is also a global mirimum solution. The
optimal outputs are the target values. Unfortunately, solving for weights W through the inverse
function of output O is extremely difficult, if not impossible. However, if we change the output by
a small amount, we will be able to find the changes in weights W via a Taylor series expansion of

0.

AO = O(W + AW, X)- O(W,X)
= VwO(W,X)AW + -;—AWTV%VO(W + EAW, X)AW (1)

where £ € (0,1).

If we update the weights of the network based on the changes in O, instead of —nVw E, as in
standard backpropagation, then we have reason to hope that this weight updating scheme would
(1) lead to faster convergence, since the search in the weight space is guided directly by the search
in the output space, and (2) lead to a global optimal solution. The idea is to ignore the shape of
the error surface in the weight space by moving W in a direction such that in the output space
error E is always decreasing.

3.2 Learning Rule Derivation

The learning rule of GGBP is derived based on the changes in output space. Let us consider a
given training pattern. The error function is

K
E=ZE;¢=

K
E Ty — Ok)? (2)
k=1 k=1

wl»—-

where k is the index for the output units.

11-128

Changing output O = (04,03, ..., Ox)T based on gradient descent in the output space gives
AO(n) =0(n + 1) = O(n) = ~nVo E(n) (3)
where n is the iteration index. Using equation (2) results in
AO(n) = 7(T ~ O(n)). (4)

Assuming the changing in W is small, we may use first order approximation in Equation (1) (For
clarity we omit writing the variables weights W and input X in function O(W, X)). Hence

AO(n) = VwO(n)AW. (5)

Note that here AO(n) is a K dimensional vector, AW is an § dimensional vector, and ViyO is a
K x§ matrix. Finding AW requires the pseudo-inverse of the matrix VyO. Thisis computationally
undesirable. Considering the special structure of the feed-forward neural network, we notice that
the weights of the output layer associated with output unit ¢ are independent of the output units
Ok, k=1,2,..., K,k # i. We can rewrite AQ as

Wy
Wo,

AOQ = {VWHO’VWO,OV"!VWOKO} (6)
Wo,

where Wy denotes weights in the hidden layer(s) and Wo, the output layer weights associated with

output node ¢. Each component of AO becomes

AOr = Vw,O:AWg + VwokokAWok
= VUuyOrAW* k=12, K (7
where W* denotes all weights contributing to output Ox. AOj becomes the inner product of two

vectors, Viyx O and AW*. This inner product is maximized if we choose AW* in the direction of
VwrOk. Thus we have

A0k = ||Vwe OlllAWH] k=1,2,... K (8)
or AO
AWH| = —% _ k=1,2,.. K. 9

The normalized component of AWF is

a0
Aw, = ||AW*||_f’£__ 10
’ TVweOnl 1o

Substituting || AW¥|| with Equation (9) gives

30x
AO T

Awy = —— e
[V Ocll?

(11)

II-129

‘teplacing AO; using Equation (4) results in
_ 9(Th - Ox) 52 (12
Ziewk(%%f)z l '

If w, is a weight belong to the output layer, Equation (12) is used as weight updating rule. If
w, is a weight from a hidden layer, we need consider the effect of all the outputs on it. The changes
due to each output Ok, k = 1,2,..., K are summed up. Hence we have

K (T - Ok)%%f

W,

Aw, = —_—t (13)
L T (52
for all s € Wpy.
Recall in standard backpropagation, the weights are updated with the following formula
JE 00k
s = =A—2L = MTx — _— 14
Aw Jw. (Tx Ok)aw, (14)
for output layer and
OE, & 80k
= - — — ——— l
Aw, = =) 7o, Akz::l(n 0x) T (15)

for hidden layer(s).
Note the similarity of the weight updating scheme of GGBP with that of the standard BP. The
new methods is analogous to the standard BP with a dynamically adjusted learning rate

n
AR (16)
80
F(3at)
where F' is a function of the partials of the output with respect to the weights. The concepts of
the two approaches are, however, quite different. With GGBP, 7 is a fixed learning parameter in
the output space, while A is a fix learning rate in the weight space.

4 Experiments

Two test problems are used to illustrate and evaluate the performance of GGBP. Both problems are
standard test problems. All tests were run on a 80386-micro computer. The reported results are
an average of 20 runs starting with the same random initial weights for both GGBP and standard
BP. All numbers are rounded to their nearest integers

4.1 The XOR Problem

The Exclusive Or (XOR) problem has been used extensively as a benchmark for neural network
algorithm evaluation due to historical reasons. A 2 x 2 x 1 feed-forward network is used in our
test. Results in Table 1 show that GGBP is 3 to 13 times faster than standard BP (BP used
the parameters 7 and a recommended by Rumelhart et al. (1986)). For the sake of comparison,
standard BP without the momentum term is tested, which resulted in a convergence speed about 35
times slower than that of GGBP. As the stopping criterion becomes more stringent, the difference
between GGBP and BP becomes more significant. This is no surprise as the GGBP uses an
approximation scheme that is best in the neighborhood of the global minimum, while standard BP
slows down when the error signal becomes small. Typical learning curves of both GGBP and BP
are shown in Figure 1.

1-130

