DIGITAL COMPUTER
PROGRAMMING
D. D. McCracken

The first general introduction in book form, stressing
actual work with computers.

John Wiley & Sons, Inc.,
Publishers

DIGITAL
COMPUTER PROGRAMMING

Copyright ® 1957 by General Electric Company

All rights reserved. This book or any part thereof
must not be reproduced in any form without the
written permission of the publisher.

Library of Congress Catalog Card Number: 57-8891
Printed in the United States of America

General Electric Series

WRITTEN FOR THE ADVANCEMENT OF
ENGINEERING PRACTICE

DIGITAL COMPUTER PROGRAMMING
by D. D. McCracken

THE ART AND SCIENCE OF PROTECTIVE RELAYING
by C. Russell Mason

APPLIED ELECTRICAL MEASUREMENT
by Isaac F. Kinnard

AIRCRAFT GAS TURBINES
by C. W. Smith

AN INTRODUCTION TO POWER SYSTEM ANALYSIS
by Frederick S. Rothe

D-C POWER SYSTEMS FOR AIRCRAFT
by R. H. Kaufmann and H. J. Finison

TRANSIENTS IN POWER SYSTEMS
by Harold A. Peterson

SERVOMECHANISMS AND REGULATING SYSTEM DESIGN, TWO VOLUMES
by Harold Chestnut and Robert W. Mayer

TRANSFORMER ENGINEERING
by the late L. F. Blume, A. Boyajian, G. Camilli, T. C. Lennox, S. Minneci, and
V. M. Montsinger, Second Edition

CIRCUIT ANALYSIS OF A-C POWER SYSTEMS, TWO YOLUMES
by Edith Clarke

CAPACITORS FOR INDUSTRY
by W. C. Bloomquist, C. R. Craig, R. M. Partington, and R. C. Wilsen

PROTECTION OF TRANSMISSION SYSTEMS AGAINST LIGHTNING
by W. W. Lewis

MAGNETIC CONTROL OF INDUSTRIAL MOTORS
by Gerhart W. Heumann, Second Edition

POWER SYSTEM STABILITY
Volume |1—Steady State Stability; Volume |l—Transient Stability;
by Selden B. Crary

MATERIALS AND PROCESSES
by J. F. Young, Second Edition

MODERN TURBINES
by L. E. Newman, A. Keller, J. M. Lyons, and L. B. Wales;
edited by L. E. Newman

ELECTRIC MOTORS IN INDUSTRY
by D. R. Shoults and C. J. Rife; edited by T. C. Johnson

PREFACE

This book is written for the person who needs to know how prob-
lems are solved on a modern stored program computer. The person
seeking such information in the past has had to rely on printed mate-
rials which are directed either toward those who only want to know
the end product of computing—what computers can do, how much
money they can save, etc—or toward those who want the details of
operation of a particular machine. Digital Computer Programming
provides a general introduction to the entire field, with emphasis on
the basic principles. It is written for people with no previous knowl-
edge of computing who want to know how to prepare the detailed
“instructions” for the computer, as well as for people whose work is
so closely related to computer applications that they need to know
what is involved in programming.

The book begins with a rudimentary discussion of the elements of
a computer and their relationships. It presents the fundamental ideas
of programming with detailed examples and explanations. These
examples are written for a mythical computer called TYDAC, which
stands for TYpical Digital Automatic Computer. This “paper”
computer is intended primarily as an aid to learning rather than as
a compilation of all the features of available equipment. It is gen-
erally representative of the major trends in present computer build-
ing. The examples are written in a form which makes it possible,
if desired, to study them without detailed knowledge of the char-
acteristics of the illustrative computer. The book presents many
of the programming techniques which must be known to make effi-
cient use of the equipment, and thus helps to answer the question,
“Now that I know how the machine works, how do I solve my
problem?”

It is anticipated that the book will be useful, in different ways, to
two main groups of readers. Those who read it without having an
actual machine to practice with will find that what they learn can

v

vi PREFACE

easily be applied to a real situation later. This is because the
primary concern is not with details and peculiarities of a particular
machine, which must be the concern of 3 machine manual, but with
the principles of programming. In fact, much of the textual matter
is a general discussion of ideas which apply equally to any computer,
without direct reference to TYDAC.

Those who have a computer at hand while they read the book will
find several desirable features. Possibly the most important is that
the chapters which do not apply to a particular situation can be
omitted without loss of continuity: at least half of the chapters may
be omitted or included at will. This group of readers will find little
difficulty in applying the illustrations to their particular machine,
partly because of the format of the programs and partly because
TYDAC is an uncomplicated machine. In a classroom situation, the
instructor can fairly easily rewrite the illustrations. The many ex-
ercises are in no way dependent on the features of TYDAC.

Both groups of readers will find that the text is self-contained. If
necessary, it may be read without an instructor or reference mate-
rial, either to provide a general background knowledge of computer
programming or as a supplement to a manual.

Practically none of the technical material of the book is original
with me. I am indebted to all those who have developed and made
available the material presented here. All the computer manufac-
turers were most helpful in supplying material on their equipment.

I wish to acknowedge my appreciation to P. M. Thompson, W. C.
McGee, and Dr. H. R. J. Grosch of General Electric Company, for
encouragement in the very early stages of this effort; to F. G. Gruen-
berger of General Electric, who read the manuscript and made many
valuable suggestions; to R. C. McGee of General Electric, who sup-
plied most of the material for Chapter 7; to members of my staff who
assisted in the clerical work; and to my wife, for her patience during
the writing.

D. D. McCRACKEN

Phoeniz, Arizona
March 1957

CONTENTS

CHAPTER

1

Computing Fundamentals

2 Coding Fundamentals

3 Binary and Octal Number Systems

4 Decimal Point Location Methods

5 Address Computation

6 Loops in Computing

7 Flow Charting

8 Index Registers

9 Subroutines
10 Floating Decimal Methods
11 Input-Output Methods

12 Magnetic Tape Programming
13 Program Checkout

14 Relative Programming Methods

15 Interpretive Programming Methods

16 Double Precision Arithmetic

17 Miscellaneous Programming Techniques
18 Automatic Coding

Numerical Operation Codes for TYDAC

APPENDIX

1 Summary of TYDAC Instructions

2 Minimum Access Programming

3 Externally Programmed Computers

4 Octal-Decimal Integer Conversion Table
5 Octal-Decimal Fraction Conversion Table
6 Bibliography

Index

vii

13
30
52
66
74
87
98
111
121
132
150
159
170
178
191
198
211
218

219
227
231
236
244
247
249

1 COMPUTING FUNDAMENTALS

1.0 Introduction

Programming a problem for solution on a digital computer is
basically a process of translating from the language convenient to
human beings to the language convenient to the computer. The
language of the problems to be solved is mathematics or English state-
ments of decisions to be made; the language of the computer is simple
arithmetic and elementary choices, expressed in coded numerical
form. By and large, we are at present required to present problems
to the computer in its language.

In order to put the problem in the required form, we must learn
in some detail the functions of the various parts of a computer, and
the precise manner in which orders are given to the machine. This
chapter presents the framework of the subject; later chapters will
provide the details. Section 1.1 discusses the over-all picture and
defines some of the basic terms. Section 1.2 gives an initial descrip-
tion of the mythical compufer used for illustration in the text. The
succeeding sections trace the development of present equipment,
sketch the steps in computer solution of a problem, and list some
typical computer applications.

1.1 Computer Organization

A modern digital computer usually consists of several boxes or
racks of mechanical and electronic equipment, connected together by
electric cables. In this array we find five distinct functions being
performed: input, memory, arithmetic, control, and output. Figure 1
is a block diagram of these functions, showing the relationships
among them.

The input section of a computer ordinarily consists of devices
which take information from punched cards, paper tape, or magnetic
tape, and place it in memory. In technical language, this is called
reading. The function of the input device(s) is essentially to trans-

2 DIGITAL COMPUTER PROGRAMMING

late from the external form in which the information is represented,
such as a punched card, to the form in which the same information is
stored in memory. The information in question may be anything
which can be stored in memory: numbers to be used in the calcu-
lation, instructions which tell the machine what to do, numbers or
letters to be used later as column headings on the output, etec. The
single arrow from the input box to the memory box in Figure 1 implies
that the information goes only to memory—further operations must
take the information from memory to other sections of the machine.

Input Output
T —— ~
~— ~
Arithmetic Memory N Control
e //
-~
-
Y / /
Auxiliary il
memory

Figure 1. Functional parts of a digital computer and their relationships. The
solid lines represent information flow, the dashed lines control signals.

1t is difficult to find good analogies between large computers and
things more familiar, and the analogies are apt to be misleading.
Nevertheless, it may be helpful to characterize the input function
as equivalent to the keyboard of a desk calculator. Of course, the
difficulty with this analogy is that a desk calculator has no real
internal memory.

The memory or storage of a computer is the nerve center of the
machine. All information must travel through it. All numbers must
be in it before any arithmetic manipulations can be carried out. All
the instructions which tell the machine what to do must be in memory
before they can go over to the control section. The memory needs
to be large and fast, i.e., it should be able to hold many numbers or
instructions—from 1000 to 30,000 in present equipment—and be
able to send these to the arithmetic or control sections with a mini-
mum delay—as short as about 10 microseconds in the fastest machines
at the time of writing. If it is not technically or economically

COMPUTING FUNDAMENTALS 3

feasible to build a high-speed memory large enough to hold all the
information required, a solution is to store the part not currently
needed in a larger, but slower, auxiliary device. As indicated in
Figure 1, the auxiliary memory “communicates” only with the main
memory.

The present trend is for the main memory to be built around
magnetic cores in large machines, and magnetic drums in the smaller.
Auxiliary memory is almost always magnetic tape, with magnetic
drums also being used in the large computers. Electrostatic and
mercury-delay storage are still employed in some machines, but are
being superseded in the newer ones. Descriptions of the operation of
these devices will be found in works listed in the bibliography.

The arithmetic section of the computer does what its name implies.
It is here that the actual work of problem solution is done. In addi-
tion to the four arithmetic operations, this section can shift numbers
right and left, and assist in certain operations which make it possible
for the computer to make decisions. It corresponds in a desk caleu-
lator to the wheels and gears and shafts that actually do the
calculation.

Register is a term commonly used in connection with several of
these basic functions; this is simply a device for temporarily storing
a piece of information while or until it is used. A register corre-
sponds quite closely to the dials on a desk calculator, which are
wheels that temporarily store the numbers on which arithmetic is
done. In our case, it is not only numbers which may be stored in
a register but also instructions.

The control section of a caleculator has the function of interpreting
or decoding the instructions stored in memory, and then sending
signals to the rest of the parts telling them what to do. In the
diagram we see two solid lines, implying that instructions are sent
to and from (usually ,from) memory to control; the dashed lines
imply electric signals sent to the rest of the machine, based on these
instructions.

The control section is equivalent to the buttons which are pushed
to start the various arithmetic operations on a desk calculator, but
the analogy is quite incomplete. The arithmetic and control sections
are the hardest functions to point to in looking at a machine. The
input and output devices are usually separate frames, as are memory
and the magnetic drums and tapes if any. The arithmetic and
control sections, on the other hand, are made up of ordinary-looking
electronic components, and the equipment constituting the two func-
tions is usually in the same cabinet. Incidentally, there are usually

4 DIGITAL COMPUTER PROGRAMMING

one or more boxes to which no reference has been made here: the
power supply. This omission simply points up that we are looking
at a computer from the standpoint of what it does and how the
information flows, not from the standpoint of electrical engineering,

The output section has the obvious purpose of recording in con-
venient form the answers to the problem or anything else in memory.
The media may be punched cards, printed pages, or paper or magunetic
tapes. The chart shows that information may be recorded (or
written, in the jargon) only from memory. For our purposes this
is true, although electronically the arithmetic unit may be involved.

The word nstruction, which has been used repeatedly, should be
amplified. Anyone who has used a desk calculator realizes that it
is necessary to have some sort of pattern to the operations so that
the operator can get into a routine. This pattern consists of a
sequence of specified arithmetic operations on specified quantities.
Analyzing or breaking down the process further, we see that doing
a desk calculation consists of doing a series of distinct steps, each
step involving one arithmetic operation and one new piece of
information.

The situation in the electronic computer is not so different. For
a problem to be solved on a computer, it must be broken down into a
series of precise steps, each involving one arithmetic operation and
one piece of information (two or three in some machines) in addition
to the result of the previous step. The difference between this situa-
tion and the desk calculator is that with the desk caleulator the
sequence of operations is in the operator’s head, whereas to satisfy the
computer the sequence must be written down in a rigidly defined
form. The appearance of these instructions will be elaborated in
the next chapter; we may say here that they are usually stored in
memory as ordinary numbers.

After defining several more terms, we shall look at the flow of
information as a typical instruction is executed. The first term is
program. A program is simply a collection of instructions which
carries out some purpose such as solving a particular problem. We
speak of modern computers as being stored program machines. As
a verb, to program means to write the instructions necessary to tell
a computer how to solve a problem, along with the planning necessary
before the detailed instructions can be written. The word code is
sometimes used almost as a synonym for program, but often it implies
a lower level of activity which involves a smaller amount of planning,
Word is used in computing as a generic term to cover either a number

COMPUTING FUNDAMENTALS 5

or an instruction or a group of characters to be used for some other
purpose. It is roughly equivalent to piece of information as used
previously.

Suppose now as a very simple example that two numbers are to be
added. The two numbers, and, in the type of machine to be con-
sidered in this book, three instructions, have to be loaded into memory
by the input device(s). Actually, many other instructions have to
be in memory to instruct the machine to bring these in, but we can
without great inconvenience ignore this fact.

The first instruction moves from memory to the control unit, which
analyzes the coded instruction to determine what operation is called
for and where in memory to locate the first number. After this
analysis or interpretation, the control unit sends out signals to the
appropriate units, calling for the specified number to move to one
of the arithmetic registers in preparation for the next operation. The
second instruction is similarly interpreted and the control unit calls
for the second of the two numbers to move from memory to the
arithmetic unit and be added to the first number. The third instruc-
tion sends the sum back to memory. Finally, the sum is written on
an output device; this also requires many more instructions, which
fact can be temporarily ignored.

In Chapter 2 we shall discuss the same example in terms of the
details of machine characteristics.

1.2 TYDAC

Much of the material of later chapters will be illustrated by writing
codes for TYDAC, which, in the tradition of naming computers by
acronyms, stands for TYpical Digital Automatic Computer. This
machine is a compilation of representative characteristics of present
computers, and of course exists only in this book. This section is a
description of the major features of TYDAC, showing the relationship
to the material of the previous section. '

The input of TYDAC is assumed to include punched cards, a
special typewriter, and a paper-tape reading device on the type-
writer. The memory is taken to be 2000 words, each holding ten
decimal digits and sign. Each word may be either a number to be
used in the calculation or a (coded) instruction. No assumptions or
statements are made about the physical type (whether magnetic
cores, drums, ete.) or the speed of the memory. Four magnetic tapes
are assumed as auxiliary memory.

6 DIGITAL COMPUTER PROGRAMMING

The arithmetic unit comprises two registers: the accumulator and
the multiplier-quotient or MQ. The accumulator does all the addi-
tion and subtraction and participates in multiplication, division, and
most other operations. It can hold eleven digits and sign. The MQ
is involved in multiplication, division, some shift operation, and a
few others. It holds ten digits and sign. TYDAC is assumed to be
able to do floating decimal arithmetic (Chapter 10), i.e., keep track
of decimal points during a calculation, if desired.

The control section has four registers: the current instruction
register, the location counter, and two registers called index registers.
As discussed in the previous section on general computer organization,
each instruction from memory has to be placed in the control section
before being interpreted and executed. The temporary storage in
which each instruction is held after being brought from memory, and
while it is being decoded, is called the current instruction register.
The register which keeps a running record of the “location” in mem-
ory of the instruction of current interest is called the location counter.
(The notion of location in memory has not been discussed yet; it
will be clarified early in the next chapter.) The index registers have
to do mostly with the automatic modification of instructions. Chap-
ter 8 is devoted to their operation and use.

The output equipment of TYDAC is assumed to be punched cards,
the special typewriter, and a paper-tape punch attached to the
typewriter.

We may now draw a diagram of TYDAC, Figure 2, which is an
expansion of the general diagram, Figure 1. The over-all information
flow paths are the same as in Figure 1; the details will be presented
in succeeding chapters.

L]

1.3 History of Computing

The characteristics of present computers have been arrived at
through a process of development, most of which has occurred since
1945. It may be instructive to trace, in broad outline, the course
of these developments.

Devices to assist in working with numbers have been in existence
as long as there have been numbers. The first was the abacus, which
made use of the bi-quinary number system (page 49) some 5000
years before its application in several modern computers. The first
mechanical computer was built by Pascal; a better device was built
by Leibnitz in 1673. The first large computer was started in 1812 by
Charles Babbage, a British mathematician. The machine was called

COMPUTING FUNDAMENTALS

"OVAAL Jo weiSerp [euonoung -z sandig

SHSip 4noy
() siys1301 xapUu|

Sy8Ip Jnoy
+43JUN0Y Uo[eI0T

(v) sade) onausey
Kowsyy Keyxny

—

|]

HEEENE

HE

_

i

HNEEEEEEEN,

SNBIp ua) :d)siBaa uoRINIISUL JUBLINY

jun joquod

- |
:_____‘ﬂ_\

su3ip usy pue
‘MOJHBA0 ‘UBIS ti0jeInWINdoY

LT

H

TIT[1I% L

L~
ugis pue susip [ewnoap \
U3} yaea ‘spiom 0002) \

AYOW3W Q33dS-HOIH

ade) saded

JajumadA)
Spaed paydung

indino

s)8ip uay pue udis :DW
Hun Mpwiyny

S

adey Jaded

Ja3umadA)

SpJed payound
ndyy

8 DIGITAL COMPUTER PROGRAMMING

the Difference Engine, from the mathematics it employed to calculate
tables of mathematical functions. Babbage did not complete his
machine, but others built a computer from his plans.

In 1833 Babbage conceived the Analytical Engine, which is the
ancestor of all automatic computers. This machine can fairly be
called a general-purpose computer, since it was to have flexible se-
quential control over the arithmetic operations it performed. Se-
quential control means that it was to be possible to specify in advance
a sequence of arithmetic operations and the numbers to be operated
on. Once the sequence had been specified by a punched card mecha-
nism developed earlier for use on the Jacquard loom, the machine
would carry out the operations automatically. The sequence could be
changed by altering the punched cards. It was to store numbers in
mechanical wheels and use mechanical arithmetic elements. The
input was to be either punched cards or hand-set dials, and the
output was to be punched cards, a printed page, or a mold from
which type could be set. Unfortunately, this brilliant conception
was never translated into a working machine, due partly to financial
difficulties and partly to engineering problems which were at the
time insurmountable.

The present application of punched cards began in 1889 when
Dr. Herman Hollerith patented the Hollerith punched card. The
equipment he invented and constructed was used in his work for the
U. S. Census Bureau, and later became the basis for the International
Business Machines Corporation which was organized in 1911.

The first modern machine to use Babbage’s principle of sequential
control was described subsequently by Dr. Howard Aiken of Har-
vard University in the 1930’s. Called the Automatic Sequence Con-
trolled Calculator, or more commonly the Mark I, it is remarkably
similar in principle to the Analytical Engine. It does, however, make
use of electromagnetic relays, and uses punched paper tape for se-
quence control rather than punched cards. It was completed in 1944
after several years’ work by Harvard University and IBM. It is
still in use.

The ENIAC (Electronic Numerical Integrator and Computer)
represented a considerable advance in the computer building tech-
nology, since it is entirely electronic in internal operation. Designed
by J. P. Eckert and Dr. J. W. Mauchly of the Moore School of
Electrical Engineering at the University of Pennsylvania, it was
completed in 1946. It was of course much faster than any previous
machine. Sequence control is effected by means of many external
wires running between holes in plugboards, and by external switches.

COMPUTING FUNDAMENTALS 9

Input and output are basically IBM cards, but dials may be used
for the input of constants.

All these machines, and others along the same lines, use some
external means of sequence control: punched cards, paper tape,
wired plugboards. The memory is used only to store numbers. The
fundamental idea of placing “instructions” in memory, which is basic
to modern computers, did not emerge until 1945. This “stored pro-
gram” idea, with which we shall have much contact, appeared in a
report written by Dr. John von Neumann, proposing a computer
quite different from the ENIAC. By storing the instructions inter-
nally and by using binary instead of decimal numbers (Chapter 3),
much greater power could be achieved at considerably less expense
of electronic equipment. The name EDVAC (Electronic Discrete
Variable Automatic Computer) was suggested. In a further attempt
to reduce the bulk of equipment, the memory of the EDVAC was
built arcund the ultrasonic or mercury-delay type of memory. The
EDSAC (Electronic Delay Storage Automatic Computer) was built
along similar lines at Cambridge University. It first operated in 1949.

No radically new ideas, of the magnitude of the stored program
principle, have appeared in the flood of computers designed and built
since these early models. Great advances have been made, however,
in speed, reliability, and ease of use.

The Univae, produced by what is now the Sperry Rand Corpora-
tion, was the first mass-produced computer placed on the market, in
1951. It is a decimal machine, has magnetic tapes, and uses the
mercury memory. It and its successors are in wide use.

The IBM 701 appeared in 1953. It gained speed by using binary
numbers and electrostatic storage.

The Whirlwind I, built at the Massachusetts Institute of Tech-
nology, was the first large machine to use magnetic cores for main
memory. This development represented a gain of a factor of 2 or
more in speed, and a great increase in reliability, over electrostatic
memory. Production machines using magnetic cores include the
Univae II and the IBM 704 and 705.

One of the problems plaguing computer designers for many years
has been the great disparity in speed between the input-output equip-
ment and the internal electronic circuitry. Significant advances
have been made in improving the reading and writing devices, but no
mechanical device can match arithmetic speeds of millions of opera-
tions per minute. A solution to this problem, which has been avail-
able since about 1954, is the use of separate high-speed tape reading
and writing equipment. For instance, on a machine where punched

10 DIGITAL COMPUTER PROGRAMMING

cards are the primary input medium, it is highly uneconomical to tie
up the entire machine while reading cards. What can be done is to
read the cards in a separate machine and write the information onto
magnetic tapes, at the usual card-reading speed; this, of course, while
the main computer is doing something else. Then the information
now on tape can be read by a tape reader connected to the computer,
at the much higher tape-reading speeds. A similar saving can be
effected on printing the output. Such equipment is available for the
major production computers.

Many further advances are surely forthcoming. The foregoing is
an outline of the trends of computers actually on the market, up to
the time of writing. Computers now in development are said to be
much faster, more flexible, and to have much larger memories.

1.4 Steps in Preparing a Problem for Computer Solution

There are several fairly distinct steps which must be carried out to
solve a problem on a computer, some of which have been alluded to in
previous sections. These steps are now outlined; details will be
given later.

NUMERICAL ANALYSIS

In all but the simplest problems, a considerable amount of work
must be done before much detailed consideration of the computer is
brought in. This is because computers, in a single step, can do only
simple arithmetic and make only simple logical decisions. Most
scientific and engineering problems are expressed in terms a computer
cannot handle directly: integrals, cosines, differential equations, vec-
tors. A numerical method must be found to translate continuous
functions to arithmetic: finite difference methods, infinite series, con-
tinued fractions, iterative procedures, ete.

Although numerical analysis (and in business problems, proce-
dures analysis) is a highly important part of the computing field,
it is outside the scope of this book.

PROGRAMMING

This is a classification which is often merged with the preceding
or following. When interpreted strictly, it implies all the planning
which comes after analysis and is related specifically to the computer.
It involves primarily drawing a flow chart or block diagram (Chap-
ter 7), planning memory allocation (Chapter 11), and planning for
careful records of what is done during coding.

