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PREFACE

This volume is the 12th in the annual Micro-
biology series for the American Society for
Microbiology and the first with me as Editor of
the series without the aid of David Schlessinger,
the prior Editor. A few changes have been made
in hopes of building on the past success of the
series and strengthening and expanding the ma-
terial. First, I have introduced a standing group
of associate editors with individual responsi-
bilities in different areas. These are Peter F.
Bonventre, University of Cincinnati Medical
Center, Cincinnati, Ohio (Medical Microbiol-
ogy and Immunology); Josephine A. Morello,
University of Chicago, Chicago, Ill. (Clinical
Microbiology and Virology); Sondra Schlesin-
ger, Washington University School of Medi-
cine, St. Louis, Mo. (Virology); Simon D. Sil-
ver, Washington University, St. Louis, Mo.
(Genetics and Molecular Biology of Industrial
Microorganisms); and Henry C. Wu, Uniformed
Services University of the Health Sciences,
Bethesda, Md. (Biology, Genetics, and Ultra-

structure of Microbes). We have selected inter-
esting and important offerings from the ASM
Annual Meeting, ICAAC, and the ASM Confer-
ences to provide material in the forefront of
research for this volume. The format has been
changed somewhat so that, in addition to ex-
tended abstracts, there is a large proportion of
minireviews. These latter offerings are intended
to provide material of general and lasting inter-
est both for the specialist and for those wishing
to learn more about a general area, while the
extended abstracts will ensure something of
specific tehnical interest for everyone. We
would all welcome suggestions. and proposals
from readers and prospective participants in the
series.

It is my pleasure to have undertaken this
work, starting last year with David Schlessinger
and continuing now with the Editorial Commit-
tee. We look forward to continued growth and
evolution of the Microbiology series over the
next decade.

LORETTA LEIVE
National Institutes of Health
Bethesda, Maryland
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A. Complement System and Host Defense Against Infection

Introductory Note

The papers presented in this symposium con-
cern the opsonic function of the complement
system. The complement system originat.d to
prevent microbial invasion, and the primary
mechanism through which it accomplishes this
task is opsonization. Opsonization is from the
Greek word ““opsénein’” and means *‘to prepare
for the (dinner) table.’” In terms of host defense,
it means that the foreign invader is prepared
(coated) such that it is more easily ingested.
C3b, iC3b, and, to a lesser extent, C4b and
possibly C5b are the opsonic complement pro-
teins.

There are receptors for C3b/C4b and iC3b on
phagocytic cells, and the interaction between
these fragments (ligands) and receptor proteins
accounts for the phenomenon of opsonization.
C3 deficiency is associated with severe and
recurrent pyogenic infections, attesting to the
critical importance of this molecule in host de-
fense. The role of complement receptors on
nonphagocytic cells is not so clear but probably
relates to the processing of immune complexes.
Through a cooperative set of interactions, these
receptors for complement fragments promote
the clearance, processing, and degradation of
foreign materials. .

In this symposium, this phenomenon of
opsonization is reviewed. During the past 5
years exciting advances have occurred in this
area. The symposium begins with a discussion of
the biology of C3 and C4. Then R. P. Levine
reviews the function of the internal thioester
bond within C3. It is through cleavage of this
bond that C3b and C4b can become covalently
attached to cell surfaces. J. A. Winkelstein pro-
vides a concise review of complement deficiency .
states. These experiments of nature most clearly
point out the critical role of the complement
system in host defense against infection. The
last two papers in the symposium summarize the
recent explosion of information relative to the
structure and function of complement receptors
for'C3 and C4 and their fragments.

To summarize, the phenomenon of opsoniza-
tion via the classical complement pathway con-
sists of antibody recognizing a foreign antigen
and binding to it, complement activation, cova-
lent attachment of C3b and C4b to the foreign
material, interaction of receptors on leukocytes
with these ligands, processing, and, in some
cases, ingestion of the foreign material—a very
efficient and fascinating way of dealing with
microbes.

JOHN P. ATKINSON
Washington University
School of Medicine

St. Louis, Missouri 63110



The Complement System: Biology of the Opsonic
Components

ANDREW C. CHAN anD JOHN P. ATKINSON

Howard Hughes Medical Institute Laboratories, Department of . fed:. ine, Division of Rheumatology,
Washington University School of Medicine, St. Louis, Missouri 63110

Complement was first described by Ehrlich
and Morgenroth in 1899 as a serum substance
which completes the action of antibody (15).
Over the past 85 years, the complement system
has been demonstrated to be a complex self-
assembling cascade composed of at least 20
serum glycoproteins (see 28 and 39 for detailed
reviews). Deficiencies of almost all the comple-
ment components have been reported and are
associated with clinical presentations ranging
from connective tissue diseases to life-
threatening infections (1). The complement sys-
tem functions as an extracellular effector path-

way by mediating opsonization or lysis and by -

promoting the inflammatory response. Mem-

brane-bound fragments serve. as ligands for re-

ceptors on erythrocytes and leukocytes to facili-

tate the clearance and phagocytosis of antigens.

Such interactions form the basis for the

~ pathophysiology of many immune complex-
mediated and autoimmune diseases.

In this series of papers, selected recent devel-
opments in the study of the structure and func-
tion of the opsonic components of the comple-
 ment system. are reviewed. Emphasis is placed

on the biology of the opsonic components, C3
and C4, the consequences of complement defi-
ciency states, and the receptors for these two
components and their degradation fragments.
We present here a brief overview of the comple-
ment system before discussing the biology of C3
and C4.

CLASSICAL AND ALTERNATIVE
COMPLEMENT PATHWAYS

The classical pathway is the primary humoral
mediator of antigen-antibody reactions and is
activated by immune complexes of the immu-
noglobulin G or M type (reviewed in 39). Inter-
action with the Fc portion of immunoglobulin G
(subclasses 1, 2, and 3) or immunoglobulin M
induces a conformational change in Clq result-
ing in the activation of Clr (see Fig. 1). Clr
activates Cls via proteolysis, and C18, in turn,
cleaves C4 to yield C4a and C4b and C2 to yield
C2a and C2b. C4b binds C2a to form the classi-
cal pathway C3 convertase (C4b2a). The alterna-
tive pathway is evolutionarily older and repre-
sents an antibody-independent system (28). Ac-

tivation of the alternative complement is not
clearly understood, but is related to the chemical
composition of cell surfaces (see legend to Fig. 1
and references 28 and 34). Factors B, D, and C3
are the early components of the alternative
pathway and interact to form the alternative
pathway convertase (C3bBb). Although the two
pathways utilize different sets of early compo-
nents, both convertases cieave C3 into C3a and
C3b and share the terminal components (C5 to
C9 or membrane attack complex).

C3b and C4b are modified by a number of
proteolytic enzymes and cofactors. C3b is de-
graded by the regulatory enzyme C3b/4b
inactivator (or I) and its cofactor H to give rise
to C3d,g and C3c (see Fig. 2). C4b undergoes a
similar degradation scheme with 1 and C4-
binding protein (C4-bp). These regulatory pro-
teins (i.e., C4-bp, H, and I) provide a means for
limiting the spread of complement activation as
the cleaved proteins are unable to continue the
complement cascade. However, C3b and C4b
and their degradative fragments bind to cellular
receptors and in so doing promote the inflamma-
tory response and the removal of foreign ma-
terial.

GENETICS

C4 is an ~200,000-dalton glycoprotein com-
posed of three disulfide-linked subunits (18, 37,
41). The «, B, and vy subunits have M.s of
~93,000, 78,000, and 33,000, respectively. Lo-
cated within the major histocompatibility com-
plex are two structural genes for C4 (reviewed in
14, 42, 422). These duplicated genes (designated
C4A and C4B in humans) encode two structur-
ally and functionally distinct, but closely re-
lated, glycoproteins. Using isoelectric focusing,
13 and 22 structural variants have been detected
for the C4A and C4B loci, respectively (24).
These structural variants are thought to be due
to amino acid differences in the C4d (a2) frag-
ment (5, 8). In standard hemolytic assays em-
ploying sheep erythrocytes, the C4B gene prod-
uct is hemolytically more efficient than the C4A
gene product (19). In addition to a-chain vari-
ants, Mauff and colleagues have recently dem-
onstrated B-chain polymorphism that segregates
independently of a-chain polymorphism (25).
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FIG. 1. Classical aud alternative pathways of the complement system. Classical pathway: see text for
discussion. Alternative pathway: the initial event of the alternative pathway is hypothesized to be a low-grade
spontaneous generation of a C3 molecule with a hydrolyzed thioester bond, designated as C3(H;0). C3(H,0)

-

mimics C3b and binds factors B and D in the presence of Mg** to generate the fiuid phase C3 convertase,
C3(H,0)Bb. C3(H,0)Bb can then cleave native C3 to generate a metastable C3b molecule. Metastable C3b may
randomly - attach to surrounding ‘‘receptive’’ surfaces (5). On activating surfaces, the surface-bound C3b
molecule is amplified in a C3b-dependent positive feedback loop by binding factors B and D to generate the
alternative pathway C3 convertase, C3bBb. On nonactivating surfaces (NA), the control proteins (I and H)

cleave C3b and thereby inactivate the molecule.

Additional _polymorphic variation has been
found at the DNA level (44). Hence, C4 displays
an unusually high degree of polymorphism.

C3 is an ~185,000 M, glycoprotein composed
of two disulfide-linked chains (reviewed in 16).
The o and B chains of C3 have Ms of ~115,000
and 78,000, respectively. There is one structural
gene for C3. Two common electrophoretic var-
iants, C3S (slow) and C3F (fast), and several
rare variants have been identified (2).

Like the two C4 genes, C2 and B are struc-
turally and functionally related complement
components that probably also arose by gene
duplication. B, C2, C4A, and C4B make up the
class III genes of the major histocompatibility
complex and tend to be inherited as a unit,
termed complotype (3, 7). Several groups
have suggested that these complotypes may
play a pathogenetic role in major histocom-
patibility complex-associated diseases ' (e.g.,
21-hydroxylase-deficiency congenital adrenal
hyperplasia) (44). Moreover, an association of
systemic lupus erythematosus with deficiencies
of C4 and C2 suggests that lack of a classical
pathway may predispose onc 10 immune

complex-mediated diseases (1). The underlying
mechanism is probably secondary to an ineffi-
cient clearance mechanism since these individu-
als cannot activate the classical pathway to G3.

BIOSYNTHESIS

The liver is the primary site of synthesis of
most complement proteins, including C3, C4,
and CS. These three evolutionarily related pro-
teins are synthesized as single-chain polypeptide
precursors, designated pro-C3, pro-C4, and pro-
C5, respectively (26, 27, 33; reviewed in 16 and
42a). The NH,- to COOH-terminal order of the
three subunits is B-a-y in pro-C4 and B-a in
pro-C3.and pro-CS5. Pro-C4 requires two intra-
cellular proteclytic cleavages (i.e., at the B-a
and a-y junctions) to yield the three-subunit

" molecule (Fig. 3). The DNA sequences of both

mouse and human C3 and C4 and human C5
indicate that the subunit junctions have inter-

vening sequences rich in basic amino acids
which are excised as the precursor molecule is
converted to the multisubunit molecuie (5, 14,
16, 32, 43; A. B. Lundwall, R. A. Wetsel, K.
Torsten, A.S. Whitehead, D. Woods, R. C.

i
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and H. C3b and C3(H,0),

pathway convertases or by hydrolysis of the thioester bond, can be

degraded by the regulatory enzymes, C3b/C4b inactivator (I) and factor H. In the presence of H or the C3b/C4b

receptor (CR1), factor I initially cleaves at two sites (sm
iC3b molecule is composed of the B-chain disulfide
,000. The ~68,000 M, a-chain fragment is further cleaved to give rise to
~27,000 M, a-chain fragment. The latter fragment and the ~43,000 a-chain
form an ~143,000 M,
responsible for this second cleavage under physiologic conditions. The
proteases further cleave an ~8,000 M, C3g fragment from the

from C3b. The remaining ~184,000 M,
fragments with M,s of ~68,000 and 43
an ~41,000 M, C3d,g molecule and an
fragment remain disulfide linked to the B chain to

thioester bond to the substrate. Noncomplement

~3,000 M, peptide
linked to a-chain

all arrows) on the « chain to release an

C3c molecule. CR1 and I appear to be
C3d,g molecule is bonded through the

NH, terminus of the C3d,g fragment to yield C3d. C4b undergoes a similar degradation scheme by C4-binding

protein (C4-bp) and 1. The o’ C4b is cleaved into three fragments, designated a2, o3, and a4 (reviewed
in 31). Whereas «2 or the C4d fragment is an ~44,000 M, molecule that is released from the C4b molecule, a3 ,
v and a4 remain covalently bound to the B and vy chains through disulfide bonds to form the C4c molecule. The

NH,- to COOH-terminal order of the three fragments in the o’ chain is a3-a2-ad (38).

Ogden, H. C. Colten, and B. F. Tack, Fed.
Proc. 43:1492, 1984). For example, in pro-C4 the
sequence of Arg-Lys-Lys-Arg appears just NH,
terminal to the o chain, and the sequence of
Arg-Arg-Arg-Arg appears just NH, terminal to
the y chain (5, 43). Porter and colleagues have
suggested that these sequences may act as rec-
ognition sites for an endopeptidase with trypsin-
like specificity followed by a carboxypeptidase
B-like exopeptidase to yield the multichain mol-
ecules (5).

Failure of cleavage at either one of the two
subunit junctions in pro-C4 will give rise to
two-subunit, incompletely processed C4 mol-
ecules (see Fig. 3). Recent studies demonstrated

that two C4-related glycopeptides with M,s of
~168,000 and 125,000 are secreted in lesser
quantities than, but with similar kinetics to, the
three-subunit C4 molecule (9, 10; reviewed in
reference 42a). Structural analyses indicate that
the ~168,000 and ~125,000 M, molecules repre-
sent the uncleaved Ba and ay peptides, respec-
tively (9). Both Ba and ay peptides are not
present on nonreduced gels, and hence the re-
maining cleaved vy and B chains are disulfide
linked to their respective uncleaved subunits.
These incompletely processed molecwes are se-
creted in substantial quantities (10 to 40%) in
culture by murine hepatocytes and macrophages
and HEpG2 cells, but together make up only
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FIG. 3. Model of C4 processing (modified from 9). See text for discussion.

~4% of the circulating C4. This difference may
be accounted for by a shortened half-life in vivo.

Murine macrophages and hepatocytes secrete
various amounts of the two incompletely proc-
essed molecules (reviewed in reference 42a).
The ratio of C4(Ba+~) to C4(B+avy) is deter-
mined by their H-2 haplotypes (i.e., the S region
of the mouse major histocompatibility complex
where the C4 structural genes are located). The
cis-dominant expression of these fragments in F;
mice suggests that this incomplete cleavage of
pro-C4 is due to an alteration in the structure of
the C4 molecule rather than due to an S-region-
linked protease. A mutation in the arginine-rich
regions at the Ba and ay junctions may give rise
to these inefficiently cleaved pro-C4 molecules.

Single-chain C3 and C4 molecules with M.s of
~185,000 and ~200,000, respectively, are also
secreted by HEpG2 cells (9, 26, 27). Structural
analyses indicate that these molecules represent
an extracellular form of pro-C4 and pro-C3.
Pro-C4 is also found in plasma (~3% of the total
C4) 17).

EXTRACELLULAR PROCESSING

C4 is secreted as a three-subunit molecule,
designated C4° (*‘s’” for the secreted form of C4)
(11, 23; reviewed in reference 42a). C4° has an «

chain with an M, ~5,000 greater than that of the
o chain of the predominant plasma form of C4,
designated C4P (11, 23). C4P and C4° constitute
~85% and 8%, respectively, of plasma C4 in
mice and humans. The remaining 7% of plasma
C4 is composed of incompletely processed C4
molecules (see above). The ~5,000 M, differ-

ence between the secreted (C4°) and major °

plasma (C4P) forms is in the ~20,000 M, COOH-
terminal fragment of the « chain of C4° and is not
due’ﬁ‘?arbohydrate Upon secretion, an ~5,000
M, propeptide is cleaved from the COOH-
terminal portion of the a chain of ('4° to yield
C4P. Three other evolutionarily related proteins,
o, macroglobulin, C3, and CS5, do not undergo
this type of extrace ular proteolytic processmg
(A. Chan, unpublished data).

FUNCTIONAL PROPERTIES OF C4° AND
C4-RELATED MOLECULES ‘

Presumably, the extracellular processing of
C4° to C4P is of physiologic importance. How-
ever, data indicate that C4° has functional prop-
erties similar to those of C4P, including: (i) an
intact thioester bond, (ii) susceptibility to C15
cleavage, (iii) similar hemolytic efficiencies, and
(iv) ability of C4b® and.iC4° to be &graded by
C4-bp and I (10). Thus, the biologic significance

ta
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of this unusual extracellular processing event is
unexplained. :

Although the incompletely processed C4 mol-
ecules make up <10% of plasma C4, the analysis
of the functional properties of these molecules
has been informative in elucidating the struc-
tural requirements for C4 functional activity (9,
10). The two-chain C4 molecules are resistant to
C15 cleavage and thus are hemolytically in-
active. Like C4° and C4P, however, upon cleav-
age of the thiolester bond these incompletely
processed C4 molecules are susceptible to cleav-
age by C4-bp and I. Hence, processing of C4 to
a three-chain structure is required for efficient
activation by C1 but not for degradation by
C4-bp and 1.

REGULATION OF BIOSYNTHESIS

Although the liver accounts for >90% of
plasma C4, C4 production by macrophages may
play an important role in the initiation of the
local inflammatory response. Guinea pig and
mouse peritoneal macrophages secrete hemo-
lytically active C4 (reviewed in 13). Negative
feedback control of C4 biosynthesis in guinea
pig macrophages has been reported (4). The
fraction of guinea pig peritoneal macrophages
secreting C4 is inversely proportional to the
quantity of C4 present in culture. This inhibitory
effect is specific for C4 and does not affect the
secretion of other proteins, including C2. A
decrease in C4 mRNA parallels this C4 inhibi-
tory effect, and therefore regulation occurs at a
pretranslational level. Such negative feedback
control has not been demonstrated in mice, but
activated peritoneal macrophages (by adherence
or elicitation by pro-inflammatory agents) shut
down their synthesis of C4 (29).

Another regulatory event controlled at the
pretranslational level is the 10- to 20-fold differ-
ences in serum C4 levels among different mouse
strains (reviewed in reference 42a). These quan-
titative differences are not due to alterations in
C4 catabolism (30). Primary hepatocyte cultures
‘from C4-high strains synthesize more C4 than
cultures from C4-low strains (40). These differ-
ences are also paralleled by differences in he-
patocyte C4 mRNA levels (12). Interestingly,

i macrophages from C4-high and C4-low strains
synthesize similar amounts of hemolytically ac-
tive C4 (30) and have similar levels of C4 mRNA
(R. Sackstein and H. R. Colten, Fed. Proc.
43:1747, 1984). Therefore, this regulatory ele-
ment appears to be tissue specific.

Another tissue-specific phenomenon is the
secretion of C3 by human peripheral blood
monocytes (reviewed in 16). Monocytes secrete

antigenically detectable, but functionally inac-

tive, C3. To date, no structural differences have

- v
s g ¥

been found between the liver and moriocyte
products. The availability of cDNA probes and
genomic DNA sequences, however, will allow
for the study of the molecular mechanism lead-
ing to these tissue-specific gene expression phe-
nomena. :

The S region of the major histocompatibility
complex controls the expression of the two
mouse gene products, C4 and sex-limited pro-
tein (Slp) (reviewed in 42 and 42a). Sip repre-
sents a nonfunctional analog of mouse C4. Inter-
estingly, whereas mice bearing the S%7, S,
and S*!7 haplotypes express Slp constitutively,
mice bearing other S-region haplotypes require
testosterone for expression. In these latter
strains, Shreffler and colleagues have hypoth-
esized a cis-regulatory element that allows
expression of the Slp structural gene,‘in the
presence of testosterone (35, 36). In &her
strains, constitutive expression of Slp is Yegu-
lated by two non-H-2 autosomal recessive genes
(6). Expression in these latter strains requires an
Slp-positive S region, but is not dependent on
testosterone. The genetic mechanisms involved
in these regulatory events are of great interest,
and the appropriate genetic probes are now
available to permit an analysis of these events.

OLIGOSACCHARIDE STRUCTURE AND
FUNCTION

Oligosaccharide moieties have been demon-
strated to be important in the function of
glycoproteins. Recent studies of mouse C4 have
demonstrated an association between carbohy-
drate structure and functional activity. Mouse
C4 has several complex oligosaccharides on the
a chain and a high-mannose oligosaccharide on
the B chain (20-22). The +y chain is not glycosyl-
ated. The ~7,000 M, difference between the «
chains of the hemolytically active C4 molecule
and the nonfunctional Slp molecule is due to two
additional carbohydrate moieties on the latter
(20, 22). Furthermore, the ~5,000 M, difference
between the C4 a chains of the H-2%/ haplotype
(which has about one-third the hemolytic ef-
ficiency) and other C4 alleles correlates with the
absence of an oligosaccharide residue on the
carboxyl-terminal portion of the H-2%" C4 «
chain (21).

Recent work has demonstrated a similar car-
bohydrate structure for human C4 (A. C. Chan
and J. P. Atkinson, J. Immunol., in press). Al-
though the C4A and C4B gene products differ in
their hemolytic efficiencies (19), no carbohy-
drate difference has been detected between the
two molecules (19; Chan and Atkinson, in
press). Whereas both the a and B chains of
human C3 are glycosylated, only the « chain of
mouse C3 is glycosylated (16). Among the vari-



