SOFTWARE SYSTEMS
ENGINEERING

SOFTWARE SYSTEMS
ENGINEERING

ANDREW P. SAGE
JAMES D. PALMER

School of Information Technology and Engineering
George Mason University
Fairfax, Virgima 22030

WILEY
A Wiley-Interscience Publication-

JOHN WILEY & SONS

New York / Chichester / Brisbane / Toronto / Singapore

Copyright © 1990 by John Wiley & Sons, Inc
Al rights reserved. Published simultaneously 1n Canadd.

_Reproduction or transiation of any part of this work
beyond that permitted by Section 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requésts for
. permission or further information should be ddressed to
the Permissions Department, John Wiley & Sons, Inc

- Library of Congress Cataloging-in-Publication Data:
Sage, Andrew P. '
Software systems cngineering / Andrew P Sage and James D Palmer
p. cm.— (Wiley series jp system engineenng)
A Wiley-Interscience publication.”
Includes bibliographical references.

1. Software engineering. 2. Systems engmeenng 1. Palmer,
James D. II. Title. III. Series.

QA76.758.524 1990
005.1— dc20 89-37350
ISBN 0-471-61758-X ' Cip

Preface.

This book is written for a first course in software engineering, particularly
one that emphasizes a systems engineering and systems management for soft-
ware productivity perspective. The book is reasonably self-contained. It is not
a book specifically addressing programmer productivity concerns, although
these are, in part, addressed in the book for the sake of completeness. It is
focused primarily on a systems approach to lifecycle management of software
production. The book discusses all the lifecycle phases of systems develop-
ment. There is considerable discussion of such industrially relevant material
as software quality, software reliability, development environments, integra-
tion, maintenance, management, and cost analysis.

We begin our efforts with an indicationa of why we necessanly assocnate
the word “‘engineering”’ with software, as contrasted with the word “science.’
Then we indicate why the{psoducuon of trustworthy software can be best
aecomplished through use of the approaches of “systems engineering.” Fol-
lowing this, we present a brief discourse concerning various topjgs of interest
and unportance in software systems engineering. Throughout our presenta-
tions in this book, we are especially concerned with ways in which software
productivity may be improved through use of the methods, design metho-
dologies, arid management approaches of systems engineering. The frame-
work and outline that we develop in Chapter 1 provides a basis for the design
" of trustworthy software as well as a logical organization for this text.

Software engineering generally has give e3stentwn to the development of
- micro-level tools to address the growmg needs to increase software produc-
“tivity. The major thrust of this book is to outline a systems engineering
~ approach to increasing software productivity that encompasses these micro-
" level tools. We also discuss the need for such macro productivity tools as

xiii

Xiv PREFACE

rapid prototyping, reusability constructs, knowledge-based systems for soft-
ware development, and an interactive support system environment to aid in
software development. Also, we are very concerned with systems manage-
ment of all aspects of the software production process. :

Thus, we are concerned with software engineering in the small, or program
and programmer productivity; and software engineering in the large, or soft-
ware systems engineering. We are concerned, in part, with the “tools” for
software engineering that enable micro-enhancement and macro-enhance-
ment of software quality. We are also concerned with an overarching systems
design methodology that will enable selection of an appropriate set of software
engineering&gols»“’e are, in addition, interested in software engineering as
a process, .and thus we devote a considerable portion of our effort to the
systems management of software.

Our effort in Chapter 2 begins with a discussion of lifecycle approaches to
the systems engineering of software. We outline several variants that lead to
phased development of software systems. Then we address the very important
question of identification of the user or client requirements that a software
system must satisfy. User requirements specification and software require-
ments specification will be the first phase of effort in our development of
software, and we devote Chapter 3 to this topic. Following the initial deter-
mination of user requirements, these user or client requirements are trans-
formed into computer software oriented requirements.

Micro-enhancement tools are important for productivity enhancement
throughout the software development lifecycle. So, we next study micro-
enhancement approaches for the various phases of a typical lifecycle for
software development. Chapters 4 and 5 present a number of these ap-
proaches. We elaborate on the most widely used micro-enhancement ap-
proaches and, through a typical software acquisition lifecycle, establish the
need for a taxonomy of methods in order to make productivity tools generally
available and subject to greater use.

Chapters 6 and 7 discuss the latter portions of the software lifecycle. In
particular, efforts that are concerned with reliability, maintainability, and
quality assurance are studied in Chapter 6. Chapter 7 presents an overview
of system integration, operational implementation, and software development
environments. This is followed by a discussion (in Chapter 8) of macro-
.enhancement approaches to software productivity including prototyping, soft-
ware reusability, and the use of expert system techniques to enhance the
production of software.

The next two chapters of the book treat management, maintenance, and
standards procedures for software productivity. Chapter 9 is concerned with
systems management-related topics. Chapter 10 is concerned mainly with the
development of models estimating cost and benefit for software development.
The final chapter of the book presents a very carefully selected and annotated
bibliography of pertinent references. : o

Thus, our book on software systems engineering provides an introductory,

>

PREFACE xv

but reasonably complete, treatment of all aspects of the development lifecycle
for software production. It is, therefore, suited for an introductory course in
software engineering that emphasizes systems management of software pro-
duction. It is also very appropnate for those who manage these efforts and
who wish to have an overview of the programmer productivity approaches
that are needed for software development.

Most introductory books on software engineering concentrate on program-
mer productivity. While we do not ignore this, we focus more on the macro-
level and systems management approaches that many believe offer much more
promise for productivity enhancement than do approaches that rely only or
primarily on enhancement of the efforts of individual programmers.

Many studies indicate that a very large percentage of system costs are
expended on software. Usually, it is necessary to maintain new systems such
that they are able to be continually responsive to changing user and environ-
mental needs. In many systems, the larger part of maintenance monies are
spent for software maintenance. A large number of difficulties both cause
and emanate from the current lack of trustworthy and effective software that
is produced at a reasonable price. These include: inconsistent, incomplete,
and otherwise imperfect system requirements specifications; system require-
ments that do not provide for change as user needs evolve over time, and
poorly defined management structures for product design and delivery. These
lead to delivered products that are difficult to use, that do not solve the
intended problem, that operate in an unreliable fashion, that are unmain-
tainable, and that—as a result—are not used. And, the problem appears to
be getting worse.

These same studies generally reveal that the major problems assocxated
with the production of trustworthy software are more concerned with the
organization and management of complexity than with direct technological
concerns that affect individual programmer productivity.

Since the critical areas associated with software productivity improvement
are fundamentally systems engineering areas, we intentiopally use the term

“software systems engineering’ to describe the general area of coverage for
this book.

Individual chapters are devoted to the major efforts that need to be ac-
complished as part of the lifecycle of software development. A number of
the major design methods are described in a stepwise, easy-to-understand
fashion. References to the contemporary literature that provides more de-
tailed discussions is a feature of the book. Many current-generation computer-
aided systems engineering (CASE) tools are discussed throughout the book.

- This is a textbook. It contains about 30% more material than can be covered
in a rapidly paced three-semester-hour introductory graduate-level course.
Through the use of a term paper and several projects, especially of a labo-
ratory deVelopment nature; during the course, it provides sufficient material
for a full-year course.

We have generally followed the sequenced pattern in the text from Chap-

xvi PREFACE

ters 1 through 10 in our own teaching efforts. For use in software engineering
curricula where there are a number of succeeding courses on specialized
topics, it may be desirable to omit coverage of some of the specialized topics
that are discvssed later.

We have l'ad some experience in using this material for industrial short
courses whete participants were already experienced programmers who were
generally familiar with the programming productivity content of Chapters 4
and 5. Omitting these two chapters led to no loss in continuity, especially
because of the detailed overview of the book that is presented in Chapter 1.

The book is intended for use in an introductory graduate-level course in
software systems engineering. The course is generally taken by many master’s-
level students in systems engineering who do not intend to undertake detailed
study in software but who wish an overview of developments in this area.
The courses on which the book is based has also been taken by computer
science students who intend to specialize in one of the programmer produc-
tivity areas. It has also been used for short courses offered for professional
development. :

Although there are no officially listed prerequisites for the course for which
this text is written. it is by no means an introductory course. The students
taking it are expected to be familiar either with computer programming and
software design, or systems engineering, and preferably with both areas.

ANDREW P. SAGE
JaMES D. PALMER
Fairfax, Virginia
December 11, 1989

Acknowledgments

Many people contribute to a book other than the authors. Almost all of this
book has been classroom tested at least twice. Many students have provided
helpful suggestions. Ann Fields and Charlie Smith were very helpful with
respect to their detailed reading of the final version of the text. Kathleen
Johnson has assisted relative to some typing chores. George Telecki was
always very supportive and understanding despite being told numerous times
that the book was in the mail. The authors wives, LaVerne and Margret, were
extraordinarily understanding of many late night and weekend sessions that
the authors needed to spend with a word processor. We acknowledge the
assistance and support of all these special people.

A.PS.
J.D.P.

xvii

L

Contents

Preface
Acknowledgments

1. An Introduction to Software Systems Engineering

1.1' The Emergence of Systems Engineering

1.2 From Computer to Information and Knowledge
Technologies

1.3 The Need for Software Systems Engineering

1.4 A Methodology for Software Systems Engineering
Design

1.4.1 Design
1.4.2 Software Systems Design Methodology
1.4.3 The Nature of Design

1.4.4 Information Requirements for Software
Production

1.4.5 = Objectives for Software Systems Engineering
1.5 Methods for Enhancement of Software Productivity
1.6 Micro-Enhancement Aids A
1.7 Macro-Enhancement Approaches
1.8 Perspectives on Software Systems Engineering
1.9 Problems '

xiii
“xvii

11
11
12
25

29
31
2
35
36
42
46

vii

viii CONTENTS

2. Models for the Software Development Lifecycle

21
2.2
2.3

2.4
2.5
2.6
2.7
2.8
2.9

Introduction
The “Waterfall” Software Development Lifecycle Model

Iterative Waterfall Software Development Llfecycle
Models

2.3.1 The Structured Project Lifecycle

2.3.2 Software Development Llfecyc}e Models with
Feedback

The Spiral Model

The Evolutionary—Prototyping Model
The Operational-Transformational Model
The Knowledge-Based Lifecycle Model
Summary

Problems

3. System Requirements Identification and Software
Requirements Specification

3.1
3.2
33

3.4

3.5

Introduction
Definition of the User.
System Requirements Specifications

3.3.1 An Activities Matrix for Preparation of System-
Level Requirements Specifications

3.3.2 Knowledge Acquisition Approaches

3.3.3 System Description

3.3.4 Hardware Description

3.3.5 System Structure Modei

3.3.6 Functional Requirements

3.3.7 Nonfunctional Requirements

3.3.8 Database Requirements

3.3.9 Installation and Maintenance

3.3.10 Interfaces and Partitioning

Software Requirements Specification

3.4.1 Software Requirements Specification Methods

3.4.2 Methods and Tools for Software Requirements
' Specifications Analysis

3.4.3 Specific Methods and Techniques

3.44 Impact of Errors in System and Software

Requirements Specifications

System and Software Requirements Specification
Documents

48

48
50

57

57

62
67

A

76
77
78
81

84

84
88
90

93

95
102
102
103
103
104
104
104
105
105
109

114
115

124

3.6

3.7
38

CONTENTS

Activities and Products from Software Requirements
Specifications

Summary and Conclusions

Problems

. Conceptual and Logical Design and Detailed Design

4.1
4.2

4.3

4.4
4.5
4.6
4.7

Introduction

Structured Logical Design for Functional Decompositiop
42.1 Structured Design Tools

4.2.2 Flowcharts

4.2.3 Data Flow Diagrams

4.2.4 Data Structure-Oriented Methods
4.2.6 Entity-Relationship Diagrams

4.2.7 Data Structured Systems Development
4.2.8 Jackson System Development
Detailed Design and Coding

4.3.1 Data Flow Design Approach

4.3.2" - Data Structure Design Approach
Object-Oriented Design Approaches
Automated Software Development Tools
Summary”

Problems *

. Programming Languages, and Testing

5.1
5.2

53

Introduction

Coding Practices

5.2.1 Introduction

5.2.2 Data Structure

5.2.3 - Structured Programming Approaches
5.2.4 Module Coupling and Cohesion

- Programming Languages

5.3.1 Cont'rol Structures

5.3.2 Exception Handling

5.3.3 Information Hiding

5.3.4 Data Types

5.3.5 Data Typing

5.3.6 Declarations

5.3.7 Initialization and Constants
5.3.8 Modules or Subprograms

ix

128
128
129
13'I
131
134
134
134
137
145
146
149
150
152
161
163
164
175
177
177

180

180
183
183
184
184
187
190
192
193
193
194
195
196
196
196

CONTENTS

54
5.5

5.6
5.7

. Software Reliability, Maintainability, and Quality Assurance

6.1
6.2

6.3

6.4

6.5
6.6
6.7

5.3.9 Pseudo-Programming Languages

5.3.10 Fourth-Generation Language Automated
Program Generators

Programming Environments

Software Testing

5.5.1 Function and Module Testing

5.5.2 System and Subsystem Testing

5.5.3 Program Verification and Validation

5.5.4 Configuration Management

Summary

Problems

Introduction N

A Taxonomy of Attributes\and Associated Metrics for

Software Quality Assurance

6.2.1 Definitions and Acronyms for Quality
Assurance

6.2.2 Software Quality Assurance Attributes, Errors,

and Plans

A Multiattribute Approach to Quality Assurance
Evaluation Measurements

6.31 The MAUT Framework for Decision Analysis

6.3.2 Independence Concepts

6.3.3 Additive Representations

6.3.4 Dominance and the Efficient Frontier
6.3.5 Decision Analysis Methods

6.3.6 Assessment Methods

6.3.7 An Illustrative Software Quality Assurance

Evaluation Using MAUT

Methods for Software Quality Assurance Measurement

and Test

6.4.1 Structural Testing
6.4.2 Functional Testing
6.4.3 Integration Testing
6.4.4 System-Level Testing
Software Maintenance
Summary

Problems

197

199
201
204
209
213
214
218
219
219

221
221

228

229

233

241
242
243
245
247
247
249

250

255
257
262
263
265
267
274
274

CONTENTS xi

7. Operational Imp‘lémentation, System Integration, and

Environments for Software Systems Engineering ‘ 279
7.1 Impleinei‘ntation and Integration : 279
7.2 Management of Software System Implementation and
Integration 286
7.3. Integration Needs in Software System Implementation 289
7.4 Software Engineering Environments 294
7.5 Environments for System Design 299
7.6 Requirements for an Integrated Software Systems
Design Environment 304
7.7 Some Hypotheses Concerning a Software Environment
Support Facility ' 311
7.8 CASE Tools for Software Systems Engineering
Environments 315
7.8.1 The Ada Language Environment—APSE , 318
7.8.2 Boeing Automated Software Engineering 319
7.8.3 Software through Pictures 320
7.8.4 NASTEC CASE Lifecycle Manager Toolkit 320
. 71.8.5 Analyst Designer Toolkit 321
7.8.6 DesignAid ‘ 322
7.8.7 Excelerator 322
7.8.8 PCSA ©323
7.8.9 Current CASE Packages 324
7.9 Summary 325
7.10 Problems 326
8. Prototyping, Reusability, and Expert Systems o 329
8.1 Introduction 329
8.2 Prototyping and Prototyping Environments 332
8.2.1 A Taxonomy of Prototyping Approaches ‘ 335
8:2.2 Explicit Phases Involved in Prototyping ’ 340
8.2.3 Observations Concerning Prototyping 343
8.3 Reusability and Reuse . 354
8.3.1 Approaches to Softproduct Reusability 362
8.3.2 Approaches to Softprocess Reusability 371
8.3.3 Characteristics of a Software Development
Environment for Reusability - 372

8.3.4 Reusability and Software Productivity - 315

xii

8.4

8.5
8.6

9.1
9.2
9.3
9.4
9.5

9.6
9.7
9.8
9.9
9.10

CONTENTS

Knowledge-Based Systems for Software Productivity
8.4.1 Types of Knowledge Support Systems

8.42 Generic Software Development Support Systems
8.4.3 Software Development Support Systems
Summary

Probl :ms

Management of the Software Systems Engineering Process

Introduction
Organization Management—Philosophical Perspectives
Organizational Management—Pragmatic Perspectives
Organizational Management—Crisis Perspectives
Implications for Organizational Design and Software
Design

Software Systems Management Planning

Software Engineering Project Management

The Role of Standards in Software Systems Engineering
Summary

Problems

10. ;/Software Cost and Value Models

©10.1
10.2
10.3
10.4

-=-10.5
10.6
10.7

Introduction to Software Cost and Value

Model Construction

Wholistic Expert-Judgment-Based Software Cost Models
Heuristics for Software Cost Estimation '
10.4.1 The Bailey-Basili Model

10.4.2 The Walston-Felix Model

10,4.3 The Putnam Resource Allocation Model
10.4.4 The Constructive Cost Model (COCOMO)
10.4.5 Other Models

Validation of Software Effort and Cost Models
Summary -
Problems

‘Bifography for Software Systems Engineering

-

Index

-
1

377
381
383
385
391
392

395

395
396
404
405

407
417
419
432
434
434

436

436
443
451
459
461
463

473
482
484
489
491
495

513

Chapter 1
]

An Introduction to Software
Systems Engineering

In this chapter we provide an overview -of our efforts to follow in software
systems engineering. We begin with an indication of why we necessarily as-
sociateffhe word “‘engineering” with software, as contrasted with the word
science.*Then we indicate why the production of trustworthy software can be
best accomplished through use of the approaches of “systems engineéting.”
Following this, we present a_brief discourse concerning various topics of
interest and importance in software systems engineering. Throughout our
presentations in this book, we are especially concerned with ways in which
software productivity may be improved through use of the methods, design
methodologies, and management approaches of systems engineering. The
framework and outline that we develop in this chapter provide a basis for the
design of trustworthy software as well as a logical organization for this text.

There are a number of reasons why software productivity improvement
studies and methods are of much importance at this time. The primary one
is that the annual expenditures for software development are very large and
the productivity not very high.

Software engineering generally has given attention to the development of
microlevel tools to address the growing needs to increase software produc-
tivity. The major thrust of this book is to outline a systems engineering
approach to increasing software productivity that encompasses these micro-
level tools. We also discuss the need for such macro-productivity tools as
rapid prototyping, reusability constructs, and an interactive support system
environment that involves the systems engineer, the user, and the software
engineer. Also, we are very concerned with Systems managemeat of all aspects
of the software production process.

Thus, we are concerned with software engineering in the small, or program

1

2 AN INTRODUCTION TO SOFTWARE SYSTEMS ENGINEERING

and programmer productivity; and software engineering in the large, or soft-
ware systems engineering.

We are concerned, in part, with the “tools for software engineering” that
enable micro-enhancement and macro-enhancement of software quality. We
are also concerned with an overarching ‘“‘systems design methodology” that
will enable selection of an appropriate set of software engineering tools. We
are. in addition, interested in software engineering as a process, and thus we
devote a considerable portion of our effort to the “systems-fnanagement”” of

"~ software.

Our goal is to utilize this just described three-layer approach [Sage 1982]
t softwale systems engr reering, as shown in Figure 1.1, in order to integrate
together the technology tor software production within an appropriate design
approach, that is matched to the orgamzatlon and environment m which the
a systcms engineering actlvny lt like systems engineering, is then a man-
agement technology in that it involves technology. which is the organization
and delivery science for the betterment of humankind, and management,
which is the art and science of enabling an organization to function in an
environment in such a way as to achieve objectives. Figure 1.2a illustrates
this view of software systems ‘engineering. Through use of-this three-level
approach to software engineering, we hope to provide and describe symbiotic
relationships between individual members of a programming team to enable
successful completion of projects that enable better performance of organi-
zations in operational environments. Figure 1.2b indicates this symbiotic
embedding with respect to people, and Figure 1.2¢ illustrates the embedding
of software ingredients. Successful efforts in software systems engineering
must be concerned with productivity across each of these entities; we will be
much concerned with a systems management approach to software devel-
opment in our efforts to follow

SystemsManagement

I

+

Systems Methodology
: and Design

l

Software ivi
Method 'LI"ooléty

FIGURE 1.1 The three levels of software systems engineering

AN INTRODUCTION TO SOFTWARE SYSTEMS ENCINEERING 3

Organization
Ingredients r A
ofsoftware i
systems |

i
\
|
|

l
I ' z
engineering %

e — -

. Environment
i

RSNV S UV

|

Technology = organization + science X
Science

Mar t = organization +

{ JU—

Managementtechnology = organization + envircnment + science

(a)
FIGURE 1.2a Software systems engineering as a management technology

Individual | | |

Team i
Project
i Organization

Environment

(b)
FIGURE 1.2b Interactions addressed through sgftware systems engineering

Our effort in Chapter 2 begins with a discussion of lifecycle approaches to
the systems engineering of software. We outline several variants that lead to
phased development of software systems. Then we address the very important
question of jidentification of the user or client requirements that a software
system must satisfy. Requirements specification identification will be the first
phase of effort in our development of software, and we devote Chapter 3 to
this topic. Following the initial determination of user requirements, these user

