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Preface.

This book is written for a first course in software engineering, particularly
one that emphasizes a systems engineering and systems management for soft-
ware productivity perspective. The book is reasonably self-contained. It is not
a book specifically addressing programmer productivity concerns, although
these are, in part, addressed in the book for the sake of completeness. It is
focused primarily on a systems approach to lifecycle management of software
production. The book discusses all the lifecycle phases of systems develop-
ment. There is considerable discussion of such industrially relevant material
as software quality, software reliability, development environments, integra-
tion, maintenance, management, and cost analysis.

We begin our efforts with an indicationa of why we necessanly assocnate
the word “‘engineering”’ with software, as contrasted with the word “science.’
Then we indicate why the{psoducuon of trustworthy software can be best
aecomplished through use of the approaches of “systems engineering.” Fol-
lowing this, we present a brief discourse concerning various topjgs of interest
and unportance in software systems engineering. Throughout our presenta-
tions in this book, we are especially concerned with ways in which software
productivity may be improved through use of the methods, design metho-
dologies, arid management approaches of systems engineering. The frame-
work and outline that we develop in Chapter 1 provides a basis for the design
" of trustworthy software as well as a logical organization for this text.

Software engineering generally has give e3stentwn to the development of
- micro-level tools to address the growmg needs to increase software produc-
“tivity. The major thrust of this book is to outline a systems engineering
~ approach to increasing software productivity that encompasses these micro-
" level tools. We also discuss the need for such macro productivity tools as
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Xiv  PREFACE

rapid prototyping, reusability constructs, knowledge-based systems for soft-
ware development, and an interactive support system environment to aid in
software development. Also, we are very concerned with systems manage-
ment of all aspects of the software production process. :

Thus, we are concerned with software engineering in the small, or program
and programmer productivity; and software engineering in the large, or soft-
ware systems engineering. We are concerned, in part, with the “tools” for
software engineering that enable micro-enhancement and macro-enhance-
ment of software quality. We are also concerned with an overarching systems
design methodology that will enable selection of an appropriate set of software
engineering&gols»“’e are, in addition, interested in software engineering as
a process, .and thus we devote a considerable portion of our effort to the
systems management of software.

Our effort in Chapter 2 begins with a discussion of lifecycle approaches to
the systems engineering of software. We outline several variants that lead to
phased development of software systems. Then we address the very important
question of identification of the user or client requirements that a software
system must satisfy. User requirements specification and software require-
ments specification will be the first phase of effort in our development of
software, and we devote Chapter 3 to this topic. Following the initial deter-
mination of user requirements, these user or client requirements are trans-
formed into computer software oriented requirements.

Micro-enhancement tools are important for productivity enhancement
throughout the software development lifecycle. So, we next study micro-
enhancement approaches for the various phases of a typical lifecycle for
software development. Chapters 4 and 5 present a number of these ap-
proaches. We elaborate on the most widely used micro-enhancement ap-
proaches and, through a typical software acquisition lifecycle, establish the
need for a taxonomy of methods in order to make productivity tools generally
available and subject to greater use.

Chapters 6 and 7 discuss the latter portions of the software lifecycle. In
particular, efforts that are concerned with reliability, maintainability, and
quality assurance are studied in Chapter 6. Chapter 7 presents an overview
of system integration, operational implementation, and software development
environments. This is followed by a discussion (in Chapter 8) of macro-
.enhancement approaches to software productivity including prototyping, soft-
ware reusability, and the use of expert system techniques to enhance the
production of software.

The next two chapters of the book treat management, maintenance, and
standards procedures for software productivity. Chapter 9 is concerned with
systems management-related topics. Chapter 10 is concerned mainly with the
development of models estimating cost and benefit for software development.
The final chapter of the book presents a very carefully selected and annotated
bibliography of pertinent references. : o

Thus, our book on software systems engineering provides an introductory,

>



PREFACE xv

but reasonably complete, treatment of all aspects of the development lifecycle
for software production. It is, therefore, suited for an introductory course in
software engineering that emphasizes systems management of software pro-
duction. It is also very appropnate for those who manage these efforts and
who wish to have an overview of the programmer productivity approaches
that are needed for software development.

Most introductory books on software engineering concentrate on program-
mer productivity. While we do not ignore this, we focus more on the macro-
level and systems management approaches that many believe offer much more
promise for productivity enhancement than do approaches that rely only or
primarily on enhancement of the efforts of individual programmers.

Many studies indicate that a very large percentage of system costs are
expended on software. Usually, it is necessary to maintain new systems such
that they are able to be continually responsive to changing user and environ-
mental needs. In many systems, the larger part of maintenance monies are
spent for software maintenance. A large number of difficulties both cause
and emanate from the current lack of trustworthy and effective software that
is produced at a reasonable price. These include: inconsistent, incomplete,
and otherwise imperfect system requirements specifications; system require-
ments that do not provide for change as user needs evolve over time, and
poorly defined management structures for product design and delivery. These
lead to delivered products that are difficult to use, that do not solve the
intended problem, that operate in an unreliable fashion, that are unmain-
tainable, and that—as a result—are not used. And, the problem appears to
be getting worse.

These same studies generally reveal that the major problems assocxated
with the production of trustworthy software are more concerned with the
organization and management of complexity than with direct technological
concerns that affect individual programmer productivity.

Since the critical areas associated with software productivity improvement
are fundamentally systems engineering areas, we intentiopally use the term

“software systems engineering’ to describe the general area of coverage for
this book.

Individual chapters are devoted to the major efforts that need to be ac-
complished as part of the lifecycle of software development. A number of
the major design methods are described in a stepwise, easy-to-understand
fashion. References to the contemporary literature that provides more de-
tailed discussions is a feature of the book. Many current-generation computer-
aided systems engineering (CASE) tools are discussed throughout the book.

- This is a textbook. It contains about 30% more material than can be covered
in a rapidly paced three-semester-hour introductory graduate-level course.
Through the use of a term paper and several projects, especially of a labo-
ratory deVelopment nature; during the course, it provides sufficient material
for a full-year course.

We have generally followed the sequenced pattern in the text from Chap-



xvi PREFACE

ters 1 through 10 in our own teaching efforts. For use in software engineering
curricula where there are a number of succeeding courses on specialized
topics, it may be desirable to omit coverage of some of the specialized topics
that are discvssed later.

We have l'ad some experience in using this material for industrial short
courses whete participants were already experienced programmers who were
generally familiar with the programming productivity content of Chapters 4
and 5. Omitting these two chapters led to no loss in continuity, especially
because of the detailed overview of the book that is presented in Chapter 1.

The book is intended for use in an introductory graduate-level course in
software systems engineering. The course is generally taken by many master’s-
level students in systems engineering who do not intend to undertake detailed
study in software but who wish an overview of developments in this area.
The courses on which the book is based has also been taken by computer
science students who intend to specialize in one of the programmer produc-
tivity areas. It has also been used for short courses offered for professional
development. :

Although there are no officially listed prerequisites for the course for which
this text is written. it is by no means an introductory course. The students
taking it are expected to be familiar either with computer programming and
software design, or systems engineering, and preferably with both areas.

ANDREW P. SAGE
JaMES D. PALMER
Fairfax, Virginia
December 11, 1989
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Chapter 1
]

An Introduction to Software
Systems Engineering

In this chapter we provide an overview -of our efforts to follow in software
systems engineering. We begin with an indication of why we necessarily as-
sociateffhe word “‘engineering” with software, as contrasted with the word
science.*Then we indicate why the production of trustworthy software can be
best accomplished through use of the approaches of “systems engineéting.”
Following this, we present a_brief discourse concerning various topics of
interest and importance in software systems engineering. Throughout our
presentations in this book, we are especially concerned with ways in which
software productivity may be improved through use of the methods, design
methodologies, and management approaches of systems engineering. The
framework and outline that we develop in this chapter provide a basis for the
design of trustworthy software as well as a logical organization for this text.

There are a number of reasons why software productivity improvement
studies and methods are of much importance at this time. The primary one
is that the annual expenditures for software development are very large and
the productivity not very high.

Software engineering generally has given attention to the development of
microlevel tools to address the growing needs to increase software produc-
tivity. The major thrust of this book is to outline a systems engineering
approach to increasing software productivity that encompasses these micro-
level tools. We also discuss the need for such macro-productivity tools as
rapid prototyping, reusability constructs, and an interactive support system
environment that involves the systems engineer, the user, and the software
engineer. Also, we are very concerned with Systems managemeat of all aspects
of the software production process.

Thus, we are concerned with software engineering in the small, or program

1



2 AN INTRODUCTION TO SOFTWARE SYSTEMS ENGINEERING

and programmer productivity; and software engineering in the large, or soft-
ware systems engineering.

We are concerned, in part, with the “tools for software engineering” that
enable micro-enhancement and macro-enhancement of software quality. We
are also concerned with an overarching ‘“‘systems design methodology” that
will enable selection of an appropriate set of software engineering tools. We
are. in addition, interested in software engineering as a process, and thus we
devote a considerable portion of our effort to the “systems-fnanagement”” of

"~ software.

Our goal is to utilize this just described three-layer approach [Sage 1982]
t softwale systems engr reering, as shown in Figure 1.1, in order to integrate
together the technology tor software production within an appropriate design
approach, that is matched to the orgamzatlon and environment m which the
a systcms engineering actlvny lt like systems engineering, is then a man-
agement technology in that it involves technology. which is the organization
and delivery science for the betterment of humankind, and management,
which is the art and science of enabling an organization to function in an
environment in such a way as to achieve objectives. Figure 1.2a illustrates
this view of software systems ‘engineering. Through use of-this three-level
approach to software engineering, we hope to provide and describe symbiotic
relationships between individual members of a programming team to enable
successful completion of projects that enable better performance of organi-
zations in operational environments. Figure 1.2b indicates this symbiotic
embedding with respect to people, and Figure 1.2¢ illustrates the embedding
of software ingredients. Successful efforts in software systems engineering
must be concerned with productivity across each of these entities; we will be
much concerned with a systems management approach to software devel-
opment in our efforts to follow

SystemsManagement

I

+

Systems Methodology
: and Design

l

Software ivi
Method 'LI"ooléty

FIGURE 1.1 The three levels of software systems engineering
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FIGURE 1.2a Software systems engineering as a management technology
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FIGURE 1.2b Interactions addressed through sgftware systems engineering

Our effort in Chapter 2 begins with a discussion of lifecycle approaches to
the systems engineering of software. We outline several variants that lead to
phased development of software systems. Then we address the very important
question of jidentification of the user or client requirements that a software
system must satisfy. Requirements specification identification will be the first
phase of effort in our development of software, and we devote Chapter 3 to
this topic. Following the initial determination of user requirements, these user



