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Preface

Electromagnetism began in the nineteenth century when Faraday
showed electricity and magnetism were not distinct, separate
phenomena, but interacted when there were time-varying electric
or magnetic fields. In Electricity and Magnetism 1 have shown
from first principles how Faraday’s experiments led finally to
Maxwell’s four equations, which with the electromagnetic-force
law summarise the whole of classical electromagnetism. This book
therefore begins with Maxwell’s equations and then uses them to
study the propagation and generation of electromagnetic waves.

Physics is a subject in which the more advanced the treatment
of a topic, the deeper the understanding of common occurrences
that is revealed. In studying the solutions of Maxwell’s equations
you will find answers to such questions as: What is an electro-
magnetic wave? Why does a radio wave travel through space at
the speed of light? How is a radio wave generated? Why does
light pass through a straight tunnel when a radio wave does not?
How does light travel down a curved glass fibre?

It is a remarkable fact that the classical laws of electromagnetism
are fully consistent with Einstein’s special theory of relativity and
this is discussed m Chapter 2. The following four chapters provide
solutions of Maxwell’s equations for the propagation of electro-
magnetic waves in free space, in dielectrics, across interfaces and
in conductors respectively. In Chapter 7 the generation of radio
waves from dipoles and of microwaves from other antennas is
explained, while the final chapter shows how these waves can he
transmitted down waveguides and coaxial lines. In conclusion,
the use of resonant and re-entrant cavities leads to a discussion
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of the classical theory of cavity radiation and its usefulness as a
limiting case of the quantuin theory of radiation.

The spectrum of electromagnetic radiation covers an enormous
range of frequencies, from the very low frequencies (VLF) used
to communicate with submerged submarines to the enormous
frequencies (10** Hz) associated with some cosmic rays from
outer space. The complete spectrum is illustrated (opposite p. 1),
where it is characterised by both the classical, wave properties
of frequency (v) and wavelength (A) and the quantised, photon
properties of energy (hv) and temperature (hv/kp). Classical
electromagnetism. provides a theory of the wave properties of
radiation over a wide frequency range, including for example
the diffraction of X-rays by crystals, but for interactions of
radiation with matter classical theory only applies in the long
wavelength, low frequency, low energy (hr <€ kg) limit. The
generation of electromagnetic radiation is similarly the classical
process of acceleration of electrons in producing a radio wave,
where the wavelength is macroscopic, but quantum processes
are involved in the production of X-rays by electronic transitions
in atoms, or gamma rays by nucleonic transitions in nuclei,
where the wavelengths are microscopic. The production of light
by laser action is an interesting example of the combination of
the classical process of reflection with the quantum process
of stimulated emission. In this text the limits of classical electro-
magnetism are explained and the usefulness of the wave and
particle properties of radiation are discussed, so that the reader
is provided with an understanding of the applicability and limit-
ations of classical theory.

SI units are used throughout and are listed for each electro-
magnetic quantity in Appendix 1. Since Gaussian units are still
in use in some research papers on electromégnetism,Appendix 2
lists Maxwell’s equations in these units and states the conversion
from the Gaussian to the SI systems. The physical constants used
in the text are listed in Appendix 3 with their approximate values
and .units. Vector calculus was introduced in Electricity and
Magnetism and is used here from the beginning. In Appendices 4
and 5 there are summaries of the most useful relations in vector
calculus and special relativity. Finally each chapter, except the
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first, has a set of associated exercises in Appendix 6, with answers
in Appendix 7.
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Chapter 1
The electromagnetic field

Electromagnetic theory is a triumph of classical physics. It was
compieted in a set of differential equations by Maxwell between
1855 and 1865. These are Maxwell’s equations for the Electro-
magnetic field. In this chapter they are first given in the form
derived from first principles in Electricity and Magnetism in this
series and then reformulated for free space and for matter.

Maxwell’s equations for the electric field E and magnetic field
B of any electromagnetic field at any frequency are:

divE = pfeg 1.1}
divB=0 [1.2]
curlE= —-g—? [1.3]
cutl B =, (j+ €o %) [14]

where p is the total electric charge density, j is the total electric
current density, €, is the electric constant and y, is the magnetié
constant (defined in Appendix 3). The electric and magnetic
fields in Maxwell’s equations refer to a classical ‘point’, which is
conceived as an infinitesimal volume of a macroscopic field, but
.containing a very large number of atoms. In matter therefore the
fields E and B, and the densities p and j, are avereges over large
numbers of microscopic particles (electrons, protons, neutrons).
The equations are not limited to linear, isotropic media, but
apply to non-linear, anisotropic and non-homogeneous media.

The electromognetic field 1
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In completely empty, or free, space there can be no electric
charges and no electric currents, sc that Maxwell’s equations
become:

divE=90 [1.5]

divB=0 [1.6]
._ _¢B

curl E = a1 [1.7]

curl B = g4 24 g}f—: [1.8]

The surprising result of these equations, as Maxwell first showed
in 1864, is that electric and magnetic fields do not merely exist in
free space, but can propagate at the speed of lighi over galactic
distances. So using satellites modern astronomy is able to explore
the universe over the entire electromagnetic spectrum from
cosmic rays to long-wavelength radio waves. We shall solve
equations [1.5] to [1.8] for the electric and magnetic fields of
electromagnetic waves in Chapter 3.

In the presence of matter, many physicists prefer to reformu-
late Maxwell’s equations [1.1] to {1.4] in terms of the four fields
E, D, B and H, where the electric displacement D and the magnet-
ising field H are defined by:

D=¢, E+P - [1.9]

and '
H=2 M (1.10]
. Ho

Here P is the clectric polarisation in a dielectric medium and M
is the magnetisation in magnetic matter. The result is that equa-
tions [1.1] and [1.4] are changed, but equations [1.2] and [1.3],
which do not centain any sources, remain as before. We will now
§.ow explicitly how first equation [1.1] and then equation [1.4]
can be rewritten in terms of D and H for use in dielectrics and
magnetic matter.

When a dielectric medium is present the charge density p in
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Fig. 1.1 Non-uniform polarisation of a dielectric

equation [1.1] is the sum of the density p, of any polarisation
charges and the density pr of any free charges. Therefore equation
[1.1] becomes:

diveoE = p,, + py. [1.11]

For an arbitrary surface S inside a dielectric (Fig. 1.1) it is the
normal components of the polarisation vectors P that produce a
surface charge. A non-uniform polarisation at the surface §
therefore produces a total displacement of charge qp across
S given by: :

ap =] Pas.

Since a dielectric is electrically neutral this must be compensated
by a charge density — p,, such that:

+
fy deT = Tdp-
Honce the flux of Pis given by a type of Gauss's law for polarised
diglectries: »

| BdS == [ pyar (1.12]

~
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Applying Gauss’s divergence theorem (Appendix 4) to this
equation we have:
fV divPdr = — fV ppdr
and so
divP=-—p,. [1.13]
Substituting for p, in equation [1.11] gives:
div (¢oE + P) = py
or
divD = py. [1.14]
The fourth Maxwell equation, [l 4], includes a term 9E/9¢
for electric fields that are varying with time. In the presence
of such time-dependent fields the motion of the polarisation
charges in a dielectric produces a polarisation current of density
jp- Since charge is conserved, the outward flux of such a current

density from a volume V must be equal to the rate of decrease
of the polarisation charges within it:

[, ipts=— 2 [, g [1.15]

From equation [1.12] this becomes

T
J;,p.ds— = J's P.ds
and, since the time derivative can be taken either before or after
the integration,

. _oP
b =57 - [1.16]

Applying equation [1.4] to a polarisable and magnetisable .
medium we must put

i=irtip+im [1.17]

- where the total electric current density j is the sum of the conduc-
tion current density j- due to the free charges Py, the polarisation
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current density j, due to the polarisation charges pj,, and the
magnetisation curtent density j,, associated with magnetlsed

matter. This arises from the atomic currents inside the matter -

which are equivalent to small magnetic dipoles.

dy dx
(a) (b)

Fig. 1.2 (a) An elementary volume of uniformly magnetised matter is
equivaient to (b) a surface magnetisation current Iy,

Magnetisation of matter by applied magnetic fields is a similar
phenomenon to the polarisation of matter by applied electric
fields. In Fig. 1.2(a) an elementary cube dxdydz of a paramagnetic
has been magnetised in the uniform applied field B and the
aligned magnetic dipoles add to a magnetic moment m. This
can be exactly equivalent to a single current loop, shown in
Pig. 12(b), where a current I, .esound:the volume element
pmdum a magnetic moment:

By deﬁnihon the mngnetisatlon M of the elementary volume is the
magnetic moment m, per unit volume, so that its magnitude is:

o mg In
M=t g ~n

The electromagnetic field 5



where i, is the surface current density or surface current per
unit length normal to the current. The uniform magnetisation M
of a block can thus be replaced by an equivalent surface current
density #,, which acts in the direction given by:

MX d=i, | ' {1.18]

~where i is the outward normal of the surface of the block con-
-taining the current. In this case the volume current density j,,
is zero and there is only a surface current density i, .

For a non-uniformly magnetised material, however, there is
also an equivalent current density j,,, by analogy with Ampére’s
law:

B -
j;uo.ds-j;,.ds [1.19]
namely
fc Mds = fs jm dS. (1.20]
‘1 dy
D _C
A M. 4r dz ’
MY
L
hﬁ/ B
im ‘
0 y

Fig. 1.3 An elementary volume of non-uniform magnetisation is equiva-
lent to a volume current density j,,

& Electromagnetic waves
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