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PREFACE

fombinatorial Algorithms on Words refers to the collection of manipulations of
strings of symbols (words) - not necessarily from a finite alphabet - that exploit the
‘combinatorial properties of the logical/physical input arrangement to achieve
efficient computational performances. The model of computation may be any of the
established serial paradigms (e.g. RAM’s, Turing Machines), or one of the emerging
parallel models (e.g. PRAM , WRAM, Systolic Arrays, CCC).

This book focuses on some of the accomplishments of recent years in such disparate
«areas as pattern matching, data compression, free groups, coding theory, parallel and
VLSI computation, and symbolic dynamics; these share a common flavor, yet have
not been examined together in the past. In addition to being theoretically interest-
ing, these studies have had significant applications. It happens that these works have
all too frequently been carried out in isolation, with contributions addressing similar
issues scattered throughout a rather diverse body of literature. We felt that it would
be advantageous to both current and future researchers to collect this work in a sin-
gle reference.

It should be clear that the book’s emphasis is on aspects of combinatorics and com-
plexity rather than logic, foundations, and decidability. In view of the large body of
research and the degree of unity already achieved by studies in the theory of auto-
mata and formal languages, we have allocated very little space to them.

The material was divided, perhaps somewhat arbitrarily, into six sections. We
encouraged several prominent scholars to provide overviews of their specific
subfields. With its sizeable bibliography, the book seems well suited to serve as a
reference text for a graduate course or seminar. Although there are no exercise sec-
tions, many open problems are proposed. Some of these may well serve as topics for
term projects - a few may even blossom into theses.
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Most of the papers contained in this volume originated as lectures delivered st the
Workshop on Combinatorial Algorithms on Words, which was held in Maratea, ftaly
during the week of June 18-22, 1984. This workshop brought together researchgrs
who had been active in the area so that a unified core of knowledge could be
identified, and recommendations for future work couid be outlined. The workshop
was deliberately kept-small and informal, and provided-a congenial environment for
lively discussions and valuable presentations. .
The Maratea Workshop was sponsored by NATO under the Scientific Affair Division
ARW Program, and it benefitted from tbe jeint sponsorship of the University of
Salerno and IBM Italia. Renato Capocelli, Mena De Santis, Dominique Perrin and
Joel Seiferas joined us on the Program Committee for the Workshop; we thank them
for their invaluable help. Mena De Santis did an excellent job of looking after the
countless details of local arrangements. Finally, we would like to express our sincere
gratitude to all the participants in the workshop.

New York City, December 1984 A. Apostolico and Z. Galil
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Open Problems in Stpngomwegy;

Zvi Galil* |

Department of Computdg Sciefég
Columbia Universi
and
Tel-Aviv University

Abstract: Several open problems concerning combinatorial algorithms on strings
are described.

0. Introduction

. Every problem in theoretical computer science can be stated as a problem on
strings {e.g. P = NP?). In this paper we restrict attention to combinatorial al-
gorithms on strings. We list several open problems. We divide them into four
groups: string matching, generalizations of string matching, index construction and

- miscellaneous. This list is far from being exhaustive.

In this paper ¥ is a finite alphabet and all strings are in 8‘ Sometimes we
add special symbols § and # not in &. Eor a string z, z; is the s-th symbol of z,
[z| is the length of z and z® is the string z reversed. We say that z occurs in y if
T = Yigi--Yig)qr) for some 1.

The string matching problem is the following: given two strings, the pattern and
the text, find all the occurrences of the pattern im the text. About half of the open.
problems in this paper are about the string matching problem or its generalizations.

Our model of computation is the random access machine (RAM) with uniform
cost (see [2]). Each register will typically store a symbol of L or an address.

1. Questions about String Matching

String matching is one of the miost extensively studied problems in theoretical
computer science. We briefly sketch the history of the problem. The problem was
solved in linear time by the Knuth Morris and Pratt algorithm (KMP in short)
{19}, and then several versions of the problem were solved in real time, even by a
Turing machine {12]. Another linear-time algorithm [6], (see also [11]) was designed
that is sublinear in the average, assuming the text is already stored in memory [28].
Then attention was given to saving space while maintaining the optimality of the
time complexity. This resulted in a linear-time (real-time) algorithm on a RAM

*This work was supported in part by National Foundation Grant MCS-8303139.
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probabilisti¢ linear-time, constant-space algorithm was also designed {18}.
A study of.more theoretical uature followed [15]. String matching can be done by
a 'I\mng mach‘ne in linear time (or even real time) and logarithmic space. Moreover,
a six head (eight, -head) two-way deterministic finite automaton (dfa) can perform
 string matching in"linear time (real time). This study tries to identify the weakest
- computation model that can do string matching in optimal time and space.

which uses orf/ five (six) registers which store pointers to the input [15]. A simple

Question 1: Can a one-way multihead dfa perform string matching?

More specifically, can such an automaton recognize the language {z$uzvju, r,v €
Z*}. Obviously a one head dfa cannot do the job. It was shown in [21] that a two-
head dfa cannot do it either. (For the latter, there is a short alternative proof using
Kolmogorov complexity.) It has been further claimed in [20] that a three-head one-
way dfa cannot do string matching. Note that without loss of generality a one-way
multihead dfa always halts, and it must do so in linear time. We believe that in
fact a one-way muitihead dfa cannot perform string matching.

Question 2: The number of states in a “Boyer-Moore dfa”.

The original Boyer-Moore algoritkm [6], BM in short, requires quadratic time in
the worst case. The reason is that the BM “forgets” the part of the text it has seen
when it slides the pattern after a mismatch. Consequently, many comparisons made
by the BM are redundant, since the outcomes of these comparisons have already
been established. Knuth [19] suggested using a dfa that will “remember” those
parts of the pattern that need not be compared. The question is to find the exact
number, or alternatively close upper and lower bounds on the number of states such
a dfa must have.

An obvious upper bound is 2/*!. In [19], it is explained why a pattern z consisting
of |z] distinct symbols requires Q(]z|?) states. An ((|z|3) lower bound for a pattern
over a three letter alphabet is known [16]. The challenge is to narrow the still large
gap.

This quegtion is of theoretical interest only. If we use only two states and do
not remember @verything, linear time suffices for the BM [11]; if |y| — |2 states
are used, then the resulting algorithm requires at most 2|y| — |z| comparisons (3].
Recall that the KMP requires a similar number of comparisons, but with a smaller
overhead.

Question 3: Parallel algorithms.

Recently, optimal parallel algorithms (those with pt = O(n), where p = number
of processors, = time) were developed for string matching for a wide range of values
@1 p: on the WRAM for p < n/logn and on the PRAM (for p < n/log® n), first for
fixed size alphabet [13], then for any alphabet [26]. (Recall that a WRAM [PRAM] is
a collection of RAM’s that share a common memory and are allowed simultaneous
reads and writes [only simultaneous reads|. In the case of WRAM’s, there is in
addition a mechanism for resolving write conflicts.) Is it possible to design optimal
parallel algorithms with a larger number of processors {e.g. p < n on the WRAM,
p < n/logn on the PRAM)? The algorithm in [26] needs concurrent writes only
in preprocessing the pattern z but not during the search. Hence, the question for



PRAM is answered affirmatively if preprocessing is not included. Another question
is whether it is possible to design optimal parallel algorithms on the more realistic
model of a network of processors of constant degree.

2. Generalizations of String Matching

(3

Question 4: A membership test for regular expressions.

Given a regular expression a over the alphabet ¥ with operators | J, -, * (union,
concatenation and Kleene star) and a string «, test whether z € L(a) (the language
described by a).

The obvious algorithm converts a to a nondeterministic finite automaton (nfa)
A in linear time; then inductively finds the set of states that A can be in after
reading z, for ¢ = 1,...,|z|. A similar algorithm works directly on a by inductively
finding all places in a we can be in after reading z;. (This construction is known
as the dot construction.) The time bound of this algorithm is O(|z||a]). The open
problem is whether this time bound can be improved. If |a| is fixed or very small
the answer is positive. A time bound of O(|z| + 2/°!) can easily be obtained by
converting A to a dfa first.

For two important special cases the problem can be solved in lmear time (O(|z|+
o).

(1) o=2X*ul* whereu € L* and

(2) a=E(x'Ue?{..Ur*)T*, where'u' € .
These are the single pattern and multi-pattern string matching problems, respec-
tively; in the first we ask whether u occurs in z and in the second whether one of
the u'’s occurs in z. These linear-time algorithms [19,1] might seem encouraging.
However, these special cases are solved efficiently because in both cases a can be
converted in linear time to a dfa (of linear size) which is impossible in the‘, general
case.

Question 5: String matching with don’t-cares.

We add to the alphabet ¥ a new “don’t-care” symbol ¢ which matches any single
symbol. Given two strings =, y over (£ [J{¢})* we want to find all occurrences of = in
y. There is an occurrence of z at position £+ 1 of y if, for all y = 1, ..., |z| whenever
z; and y;4; are not ¢, they are equal. Observe that all known string matching
algorithms simply do not work if we allow “mistakes” in the form of don’t-cares or
as in the next problem.

In [9] the problem was reduced to that of integer multlpllcatlon If an al-
gorithm multiplies two binary numbers of n and m bits in time T(n,m), then
the time bound for our problem is O(T(|z|, |y]) log |z|log|Z]). Using the multi-
plication algorithm that is currently asymptotically best, we obtain a bound of
O(ly| log® || log log |z log |Z).

The open problem is whether we can do better. Perhaps we can do better in
the case that the don’t-care symbols do not appear in the text (y). This case is
considered in [24]. Of course, in case of a small alphabet and a small (constant)



number of don’t-cares we can solve all the corresponding exact string matching
problems. Noteé that the related problem of string matching with don’t-care symbols
in the pattern that can match an arbitrary string is easy: just treat each maximal
pattern fragment separately.

‘ Question 6: String matching with mistakes.

Given g pattern z and a text y and an integer k, find all occurrences of strings of
length |z| with distance at most k from z, where the distance between two equal size
strings is defiied as the number of positions in which they have different symbols.

Even for a small constant k we do not know how to solve the problem in time
smaller that O(|z||y]), which is an upper bound on the naive algorithm that com-
putes the distance of z and each substring of y of length |z|.

The only known improvement seems to be in the case k = 1 [26]. A linear-
time algorithm follows from a linear-time algorithm that finds for each position in
the text the occurrence of the largest prefix of the pattern {22]. The latter is a
modification of the KMP. :

¥

3. Index Construction

4

In efficient string matching we preprocess the pattern (or patterns) in linear
time so we can search for it (or for them) in time linear in the length of the text.
Another approach is to preprocess the text, to construct some kind of an index, and
then use it to search for some pattern « (or answer some queries on z like finding
the number of occurrences of z) in time linear in |z|. A number of linear-time
algorithms are known, but all of them are closely related [7]. The first of these is
the one discovered by Weiner [27].

Question 7: Can we construct an index in (almost) real time?

More specifically, can we read the text followed by one (or possibly more) pat-
tern(s) one symbol at a time, spend a constant ainount of time on each symbol, and
identify occurrences immediately. This question can be rephrased as follows: Can
we accept the language L = {uzv$z$|u, z, v € £*} in real time. The word “almost”
in Question 7 refers to the fact that we might still be constructing the index when
we are already reading «.

One of the earliest results in computational complexnty [17] implies that L cannot
be accepted in real time by a multitape Turing machine, but Question 7 refers to
RAM. It was shown in [17] that Ly = {w; #wo#. . #wiSwl|w; € {0,1}*, k2 0,w =
w; for some 1} cannot be accepted by a multjtape Turing machine in real time, and
the same proof implies that neither can Ly = {w;#we#.. wiSwjw; € {0,1}*k >
0,w = w; for some ¢}. L, is a subset of L, and this is why the same is true for
L. But Ly and Lj can be accepted easily in real time by a RAM [12]. Hence the
results on Turing machines only show that the model is too weak.

A positive answer to Question 7 is claimed by Slisenko in [25] and in several of
its earlier versions. In fact, the seventy-page solution claims to have characterized
all periodicities of the text in real time. Unfortunately, so far I have not been able



- 5

to understand the solution. So, the question may be interpreted as follows: Can we
find a reasonably simple real-time construction?

Question 8: Parallel Algorithms.

There are three interpretations to this question: &
(1} a parallel constructien. of #dices for sequential searches;
(2) a parallel construction of imdices for parallel searches; or even
(3)  a sequential construction of indices for parallel searches.
In all cases we would like to design efficient parallel algorithms. In the second and
third cases we first have to find a good way to define a specific index.

Question 9: Dependence on the alphabet size,

Most of the algorithms for string matching (with a single pattern) do not depend
on the size of the alphabet £. in fact X can be infinite. The only assumption needed
is that two symbols can be compared in one unit of time.

All the algorithms for index construction do depend on the size of £. Every
index is either a tree or a dfa with up to |Z] successors for every node. If we use an
array of size |Z| for every node, then the index construction takes time (and space)
O(lyl15]), while the search takes time O{lx|). If we use lists of successors, then the
former takes time O(|y{{Z]) (but space O(|y])} and the latter takes time O({|z{|Z]).
I we use a search tree for the set of successors of each node, the former takes time
Otiyl log X)) and the latter O(jz]log|L]). Alternatively, we can use hashing. The
problem is to determine the exact dependence on the alphabet size.

A similar problem is to determine the exact dependence on the alphabet size in
the problemn of multi-pattern string matching.

Question I0: Generalized Indices.

Can we efliciently construct indices that will {efficiently) support harder queries.
An example of such a query is finding the maximal aumber of nonoverlapping
occurrences of a given string. Counting all the occurrences is a simple application of
the known imlices. If we insist on nonoverlrpping occurrences, the best algorithm
[5] is neither simple nor linear time.

4. Miscellaneous Problems.

Question 11: Testing unique decipherability.

Given a set [' of n strings ¢y, ..., ¢, over L of total length L, is there a string in
I'* that can be parsed in two different ways, or is U;-#J-(Cgl‘. Ne,I*) =97

There are several algorithms for solving the problem (see for example [4]). They
are essentially the same, and they solve the problem in time O(nL) by constructing
a certain graph in a search for a “counter example”. The time bound follows
immediately from the fact that the graph may have up to L vertices of degree up
to n. This time bound is quadratic in the worst case and is linear only for n =
constant. Can we do better?
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Question 12: Solving string problems with two-way deterministic pushdown au-
tomata. -~

Two-way deterministic pushdown automata (2dpda’s) have been closely related
to string matching. The linearity of string matching (and palindrome recognition)
can be easily established by first showing that a 2dpda accepts the corresponding
language, since Cook showed that membership for a 2dpda language can be de-
termined in linear time by a RAM [8] (see also [10]). There are some linear-time
recognizable string languages that we do not know how to recognize with a 2dpda.
Two such examples are the following.

PREFIXSQUARE = {wwyu|w, » € £°},and PALSTAR = (PAL)",

where PAL = {wjw € £*,w = w®, |w| > 1} is the language of nontrivial palin-
dyomes. (The related language {wwRu|w,u € £*} can be recognized by a 2dpda.)
For a linear-time recognition of PALSTAR and other similar open problems, see
[14]. ' -
Question 13: String problems on DNA. '
There are many interesting problems that arise in the study of DNA sequences.
Here we mention one such problem. We assume that for some of the pairs of
symbols (ip I x ) there is an associated positive real number. The meaning of this
number is that if we fold a string so that these two symbols touch the associated
number represents the amount of energy that is released. Given a string, we want
to find an optimal way to fold it (a way that maximizes the energy released). The
problem can be stated as finding a planar matching (graph matching, not string
matching) of maximal weight. The problem can be solved easily in time O(n3)
using dynamic programming [23]. Can we do better?

Acknowledgement: Alberto Apostolico, Stuart Haber and Joel Seiferas read an
earlier version of the paper and gave me many helpful suggestions.
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EFFICIENT STRING MATCHING WITH DON'T-CARE PATTERNS

Ron Y. Pinter
IBM Israel Scientific Center
Technion City
Haifa 32000, ISRAEL

ABSTRACT

~ The occurrences of a constant pattern in a given text string can be
found in linear time using the famous algorithm of Knuth, Morris, and Pratt
[KMP]. Anho and Corasick [AC] independently solved the problem for patterns
consisting of a set of strings, where the occurrence of one member is
considered a match. Both algorithms preprocess the pattern so that the text
can be searched efficiently. This paper considers the extension of their
methods to deal with patterns involving more expressive descriptions, such
as don't-care (wild-card) symbols, complements, etc. Such extensions are
useful in the context of clever text-editors and the analysis of chemical
compounds. '

The main result of this paper is an algorithm to deal efffciently with
patterns containing a definite number of don't-care symbols. Our method is
to collect "evidence" about the occurrences of the constant parts of the
pattern in the tekt, using the algorithm of Aho and Corasick [AC]. We
arrange the consequences of the intermediate pgsults of the search in an
array of small counters whose length is equal to that of the pattern. As
soon as a match for the whole pattern is found, it is reported. If we

‘ assume‘that the counters can be incremented in parallel, the overall (time
and space) complexity of the algorithm remains linear. Otherwise, the worst-
case time complexity becomes quadratic, without changing the space
vequirements. ' :

We include here a discussion of why alternative ways to solve the
probiem, especially those trying to preserve the purely automaton-driven
-constructions of [KMP] and [AC], do not work. ‘Finally, we describe a minor
extension to an algorithm of Fischer and Paterson [FP]. Originally, it
could deal with don't-cares in the text; now it can also handle complements
of single characters within the same computational complexity. '

* This work was supported in part by the National Science Foundation, U.S.A.,
under grant No. MCS78-05849, and by a graduate fellowship from the Hebrew
Technical Institute, New York,
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