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Future applications of Digital Communication Techniques to architecting and implement-
ing global information transportation and computing systems have never been brighter. This
outlook is driven by social, economical, political, and technological reasons. From a techni-
cal perspective, it is recognized by most communication engineers that communications is
required to accomplish computing while computers are required to accomplish communica-
tions. From a technology viewpoint, this technical perspective is rapidly being accomplished
using emerging digital microelectronic technologies (DSP and VLSI) to implement digital
communication systems.

Digital Communication Techniques are exciting and are of vital importance to all
societies. Countries have failed to be competitive simply because they did not succeed in
establishing good communication infrastructures. Consequently, one major purpose of this
textbook is to present, in a unique and innovative way, a functional architecture and a the-
ory for use in the design of uncoded and coded digital communication systems. The sys-
tem architecture is pyramidal and the theoretical development is unique in that it is pre-
sented, for the first time, from a Systems Engineering perspective for both bandlimited
and power limited communication channels. This perspective adopts the point of view that
coding and modulation are both components of the signal design problem and that de-
modulation and decoding are both components of the signal detection problem. Beginning
with Chapter 1, the subject matter progresses top down and systematically in a hierarchial
way. The geometric concepts, first introduced by Shannon and Kotelnikov, and later docu-
mented by Wozencraft and Jacobs in their book Principles of Communication Engineering,
are used in Chapter 3 to set the foundations for signal design and detection. Starting with
Chapter 4 and ending in Chapter 8, coherent, noncoherent, partially coherent, and dif-
ferentially coherent detection techniques are treated for numerous uncoded modulation
techniques, such as BPSK, QPSK, MPSK, and MFSK. In Chapter 10, these same detec-
tion techniques are applied to more advanced forms of uncoded modulation such as QAM,
CPFSK, MSK, QFPM, and CPQFPM. As opposed to the M-ary error probability criterion
used in designing uncoded systems, the Ro-criterion is introduced for use in optimizing the
design of coded systems. Since Ry is a function of the codec and modem choice, this cri-
terion leads to a combined codec-modem design that employs the most effective coding
and modulation technique. In fact, soft-decision demodulators can be systematically de-
signed using Ro. Chapters 11, 12, and 13 consider block, convolutional, and concatenated
coding techniques from the systems perspective. In addition, the counterparts of maximum-
likelihood (ML) decoding and ML decoding using the Viterbi algorithm are given. A va-
riety of interleaving-deinterleaving techniques (block, convolutional, helical, hybrid) are
presented. To understand the connection among the various coding techniques presented,
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a Venn diagram for error correcting codes is constructed; emphasis is placed on present-
ing the communciations efficiency achieved using Hamming, Golay, Bose-Chaudhuri-
Hocquenghem (BCH), Reed Solomon (RS), and convolutional codes.

There are a vast number of textbooks on the market today that deal with the subject
of digital communications. In fact, in a quick survey of the textbook literature, we were
able to come up with at least ten books that include the words “digital communications” in
their titles. At least three bear these words as their entire title implying, somewhat, that they
are an all-inclusive treatment of the subject. Many of these books are quite broad in scope,
but also quite shallow in detail. Striking a proper balance between these two attributes,
yet maintaining a high level of readability, is no simple task. We believe that our book
accomplishes this important goal and sets it apart from all other digital communication texts
currently on the market. Several key features that distinguish our book from the others are
as follows:

« A top-down perspective of digital communication system design, using a pyramid
structure to describe the system functional architecture.

A top-down presentation of the theory needed to perform uncoded and coded system
design.

« Includes Ry criterion for use in the design of coded systems.

« Includes more recent developments in the field that have occurred over the last 20 or
30 years.

« A universal appeal to graduate students as well as system architects and engineers.

» Written by authors whose combined industrial and university experience exceeds 60
years.

There are many specific features that make this book unique and beneficial to its read-
ers. With the advent of today’s advances in the solid state microelectronic technologies, a
variety of novel digital communication systems are appearing on the market and are serv-
ing as motivation for the introduction of new telecommunication and information services.
Chapter 1 of this book provides the reader with examples of such services and top level
system architectures thereby indicating the highly complex nature of these systems. We
believe that Chapter 2, which discusses the computation of power spectral density of dig-
ital modulations, is the best treatment of spectrum efficiency evaluation found anywhere.
This computation is essential to assessing the bandwidth (spectral) occupancy requirement
of a digital modulation, yet it is ignored in many books. Another key feature of this book
is the organization and order of presentation of the material in Chapters 3 through 7. By
first describing coherent detection and then successively following with noncoherent, par-
tially coherent, and differentially coherent detection, the reader is provided with a logical
flow starting with the conceptually simplest technique and proceeding top down to the more
complex techniques. The discussion of double differentially coherent detection in Chapter 8
is unique to our book.! Here the reader will learn how to design differentially coherent com-
munication systems that are robust to frequency offsets due, for example, to Doppler and
oscillator instabilities. Chapter 9 treats the voluminous subject of bandlimited communica-
tions in a condensed and unified way. Included here are the important subjects of Nyquist

I. There are a few Russian-authored textbooks that discuss double differentially coherent detection, but as yet,
they have not been translated into English.
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and partial response signaling, maximum-likelihood detection in the presence of intersym-
bol interference, and equalization. To the authors’ knowledge, Chapter 10 of this book is the
most complete and up-to-date treatment of advanced modulation techniques. It guides the
reader through the most recent modulation techniques described in the literature and how
they compare in terms of such properties as modulation type, pulse shaping, continuity of
phase, variation of envelope, 1 and Q channel data rates, and parameter offsets. Still another
key feature is the proper identification of the important link (mapping function) between the
modulation and coding functions in coded digital communication systems. Most books that
discuss both modulation and coding treat these two functions as separate and independent
entities. In some books where modulation and coding are treated as combined, the treat-
ment is strictly limited to trellis coded modulation. This book is unique in that it presents a
general formulation for coded communication systems by properly defining the key parame-
ters and interfaces between the various modulation and coding functions. This discussion is
presented in Chapter 11 which includes many examples to clearly elucidate this often over-
looked but all important aspect of system design. Chapter 12 discusses the use of the Ry
criterion in the design of coded systems. Finally, Chapter 13 presents a compact yet author-
itative discussion of the design of convolutionally-coded communication systems, a subject
that, by itself, can occupy an entire textbook.

We recognize that a complete study of reliable and efficient communication of infor-
mation requires a full and detailed treatment of the two important disciplines: information
theory and communication theory. Since the main focus in this book is on the latter, we do
not treat the problem of efficient packaging of information (data compression of text, voice,
video, etc.) nor do we treat the important problem of designing the ultimate error control
coding-decoding technique which achieves the ultimate transmission speed (channel capac-
ity). The solution to these problems are best treated in separate books on information theory
and error control coding, and, indeed, there are such books available.

This book has been written for use as a textbook at universities involved in teaching
Communication Sciences. It has also been designed to accommodate certain needs of the
systems architect, systems engineer, the professor, and communication sciences researcher.
The lecture material has been organized and written in a form whereby theory and prac-
tice are continuously emphasized. Most of the problems suggested at the conclusion of each
chapter have evolved from teaching graduate level courses to students at the University of
Southern California and the California Institute of Technology. Through homework assign-
ments, most of the problems have been field tested, corrected, and enhanced over the years.

The architecture for this book is predicated upon two graduate level Communica-
tion Theory courses (EES64 and EE664) taught at the University of Southern California’s
Communication Sciences Institute over the past 25 years. In this sense, two semesters are
required to cover its contents. The organization and presentation of the material is largely
based upon the academic and course design work of Professors William C. Lindsey and
Robert A. Scholtz. The authors’ approach to presenting the solution to the problem of vector
communtications in the presence of colored noise and the representation of bandpass random
processes are largely due to Professor Scholtz. The Digital Communication System architec-
ture presented in the pyramids of Chapter [ was created by Professor Lindsey. In addition,
certain exercises given in and at the conclusion of Chapters 1, 3, 4, 5, and 6 were taken
with permission from problems created and used by Professors Robert M. Gagliardi, Vijay
Kumar, William C. Lindsey, Andreas Polydoros, Charles L. Weber, and Robert A. Scholtz
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all of the University of Southern California’s Communication Sciences Institute. The au-
thors wish to thank these individuals for permission to use these challenging problems as
homework exercises.

The authors are grateful for the help of many colleagues and students during the
preparation of this manuscript, and are particularly indebted to: Dr. Michael Mandel, for-
merly a graduate student at the California Institute of Technology; Dr. Debbie Van Alphen,
Professor of Electrical Engineering at California State University, Northridge; and Dr.
Jorge M. N. Pereira of GTE; for their comments and criticisms. Furthermore, we thank our
colleagues at the Jet Propulsion Laboratory, Pasadena, CA, namely: Dr. Tien Nguyen, Dr.
Haiping Tsou, Dr. Daniel Raphaeli, Mr. Biren Shah, Mr. Sampson Million, Mr. Alexander
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